A M O N O G R A P H O N A S H

PRACTICAL USE OF ORACLE
ACTIVE SESSION HISTORY

Prepared By David Kurtz, Go-Faster Consultancy Ltd.

A Monograph on ASH

Version 1.1

Monday 3 November 2014

(E-mail: david.kurtz@go-faster.co.uk, telephone +44-7771-760660)
File: Practical_ASH.docx, 3 November 2014

Contents

L1 oo [0 Tod £ T o SRS 3
AAGENTA ..ttt bbb bbb bbbttt b 3
A Very Brief Overiew of Active Session HiStOrY ... 4
ASH in Oracle ENterprise IMANAGETveiveiieiiieiieiiesee e e stesae e ese e sreente e svesnaesaeens 5
What data d0eS ASH FEIAINTceviiiiiciiier e 6
Comparison With SQL TTACEc.cieruririerieieite ettt 10
Application INSErUMENTALIONc.oiiiiiiiii e 12
PeopleSoft Specific INStruMENtatioN...........ccoeiiiiiiiee e 12
Using SQL t0 ANAlYSE ASH Data.........cooeiiiiiiiiieieieie st 14
Statistical ANalysiS APPrOBCHc.oiiiiii i 14
(0] o] LT (1Y PP RORUR U 15
PeopleSoft SPeCific ASH QUETIES.c.viiiiiiiieere e 15
BN PrOCESSES. ... evveviieriesteeieeeeeee st steste st e et e ree et sae st ene e s e e e saeseestesresneeraeneeeenee e e 15
Application Engine from PeopleTools 8.52..........ccviiiiiiiiineie e 16
ON=LNE ACLIVILY ...ttt bttt bbb e b e sae s 18
KIMIL REPOIT. .ttt ettt b ettt et ae e bt e b e e s beenbeebe e e sneas 20
Other TECRNIGUESccueeeee ettt b e e bbbt nne b b 23
Monitoring Progress of Processes in Real TIMecoocovvereineneenenese e 23
Developers not Using Bind Variables..........ccceeriiiviiniiecseecce s 25
HOW ManNY EXECULIONS?c.vvivieiieieeiciesiesie ettt sre et sresbe e enaeseeneeeeseennes 29
(O] Tod [T 0o [T T UV U PR URROSUPURRN 29
(O] Tl [0 o SO UUTURURURRUSUPURPRN 29

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 1

mailto:david.kurtz@go-fastert.co.uk

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

How Many Transactions (IN 100)?.......coerereiirieiieie et 31
When Did the TranSaction STArt...........ccooiiiiiiiieiiee e 32
SINGIE WAIE EVENTcvviiicce ettt sttt nte e sne st e e e 34
What Kind of Single BIOCK REad............ccecieieiiiesese e 38
BlocKing LOCK ANGIYSIS.......ccviieieicie ettt s 40
Resolving the Lock Chain to the Ultimate Blocking Sessionccccoevvvvivinciiiinennne 44
Which Tables Account fOr MY 1/O?ccooiiiiiiiiiieeese e 46
WO IS USING ThiS TNUEX? ...oviiiiiiiiiecs bbb 51
Index Use from SQL Plans Captured by AWR.........cccoooiivie i 51
Limitations OF IMELNOMcoooiiiiiiiee e 57
Did my EXecution Plan Change?cccceviiiiiiieeieie s ste s 58
What was the Effect of Plan Stabilitycocoeiiniiiiic e 59
Which line in the EXECULION PIAN?ooiiiiiiiieiieee st 62
RECUISIVE SQL ...ttt ettt ettt st st beene et e e et sae e 64
Temporary SPace OVEINEAU.........c.cccvi it sneas 66
Things That Can GO WIONQ.......ccuviiiiiiiiesieeite e ee st s e e steete e e e e steesteebeanaesnaesneas 67
DISPLAY _AWR reports 010 COSESccvveiiiiiiieiic ettt 67
Statement not in Library Cache ... 69
Only Some Statements are in the Library Cacheccocoeviiiininiiicc 70
Lots of Shortlived Non-Shareable SQLcccooeiiiiiiiiiiieeeeeee e 72
Error ORA-DB502ooveiveieiiiieiie ettt sttt sttt bt et ebe e e etenbe e 75
ErrOr ORA-DLA22 ...ttt sttt et bttt nbe et b 75
Error ORA-AAD02 ..ottt sttt sttt sttt ettt se e ebenae e etenbe e 76

A o] 1= Lo | SRS US PRSP 77
FUPNEE TRATINGttt ettt bbbt ebesne e 77

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 2 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Introduction
This document started as preparation for a presentation
Agenda
e Briefly, what is ASH and what does it collect (see page 4)
o Recent/Historical Activity
e OEM and ASH Report (see page 5)
e Compare and Contrast with SQL Trace (see page 10) .
o Application Instrumentation (see page 12).
o PeopleSoft specific example of adding your own instrumentation.
e Using SQL to Analyse
o TopSQL
o Monitoring progress of process in read time (see page 23).
o Lock Analysis (see page 40)
= Blocking Session Not Active.
o Changing Exection Plans (see page 58)
o Source of /O (see page 46)
o Temporary Tablespace Usage (see page 66)
o Limitations (see page 67)
= Cannot Obtain SQL (space 67)

= Error Messages (see page 75)

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 3

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

A Very Brief Overiew of Active Session History

Active Session History (ASH) was introduced in Oracle 10g. It samples the activity of each
activel database session every second. The data is held in a buffer in memory in the database.
The design goal is to keep about an hour (your mileage will vary). If a session is not active it
will not be sampled. The in-memory buffer is exposed via a view called
v$active_session_history.

You could sort of simulate some of ASH by taking a snapshot of v$session for every session,
but the overhead would be prohibitive. ASH is built into the Oracle kernel, so its overhead is
minimal.

When an AWR snapshot is taken, 1 row in 10 from the ASH buffer is copied down into the
AWR repository. It can also be flushed to disk between snapshots when the buffer reaches
66% full, so there is no missed data.The data is stored in
WRH$_ACTIVE_SESSION_HISTORY and it is exposed via
DBA_HIST_ACTIVE_SESS_HISTORY.

ASH is enabled by default, but before you rush off to use it, be aware that it is a licenced
feature. It is part of the Diagnostic Pack, so you have to pay for it. I don’t like that either, but
that’s how it is.

1| want to emphasise that if the session is not active it will not be sampled. You can actually
set a parameter _ash_enable_all = TRUE to force all sessions, including idle sessions, to be
sampled.

But as Doug Burns points out in his blog posting
(http://oracledoug.com/serendipity/index.php?/archives/1395-ASH-and-the-psychology-of-
Hidden-Parameters.html), these are undocumented, unsupported parameters, and they are set
this way for a reason — you have been warned.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 4 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

http://oracledoug.com/serendipity/index.php?/archives/1395-ASH-and-the-psychology-of-Hidden-Parameters.html
http://oracledoug.com/serendipity/index.php?/archives/1395-ASH-and-the-psychology-of-Hidden-Parameters.html

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

ASH in Oracle Enterprise Manager

Of course, OEM provides a way to run ASH reports, and here you see | have picked a
particular time window, and | have specified a module name — in this case the main payroll
calculation process.

ORACLE Enterprise Manager 10g
Grid Control

Setup Preferences Help Lof
| Alerts | Compliance | Jobs | Repol

3 Deployments
Hosts | Databases | Middleware | Web Applications | Services | All Targets | Groups | Systems Soft

D Instance: HRPRD > Logged in As
Run ASH Report
Specify the time period for the report. |_Generate R
Start Date [21/02/10
(Example: 15/12:03) e
Stat Time (3 ~[01 ¥ @AM OPM EndTime [4_ v [51 ¥|@AaMCPM

Filter [Module | [GPPDPRUN |

Home | Targets | Deployments | Alerts | Compliance | Jobs | Reports | Setup | Preferences | Help | Logout

Copyright @ 1996, 2009, Oracle andfor its affiistes. All rights reserved.
Oracle is a registered trademark of Oracle Corporation andior its affilistes.
Other names may be trademarks of their respective owners

About Oracle Enterprise Manager

And this is great. The report is easy to produce, and it tells you lots of things. Which SQL
statements are consuming the most time, which objects have the most |

You can see in this example | picked a module that was responsible for 86% of the total, and
there were an average of 14.8 active sessions (I know there were 32 concurrent processes).

ASH Report For XXXXXXXX/IXXXXXXXX
(1 Report Target Specified)

[ocooomx | az00535484 [ooooomK | 1[0zo40 [NOo [feearo3

m Buffer Cache Shared Pool ASH Buffer Size
24 1331M100%) [11,440M(35.9%) [1,252M(9.4%) | 40.5M (0.3%)
Sampi Tme

Analysis Begin Time: 21-Feb-1003:01:49 | DBA_HIST_ACTVE_SESS_HISTORY
in &R snapshot 64162

Analyziz End Time:

21-Feb-1004:51:49 | DBA_HIST_ACTVE_SESS_HISTORY
in &R snapshot 64169

[Brapsed Time: [1100 (mins) |
[ample court: [8,765 |
|Average Active Sezsions: | 14.80 |
|Avg. Active Session per CPLU: | ne2 |
[Report Targe: [MODULE ke 'GPPOFRUN' | 86% of total datahass activity

ASH Report

Top Events

Load Profile

Top SOL

Top PL/SQL

Top Sessions

Top ObjectsFileslatches
Activity Over Time

But, you don’t get execution plans, and for that you will need to dig deeper yourself, and learn
to use the DBMS_XPLAN package.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 5

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

What data does ASH retain?

03 NOVEMBER 2014

Most of the columns on v$active_session_history are taken directly from column of the same
name on v$session, some have different name, and there is some additional information that is

not available elsewhere.

Column on v$active_session_history

Correspondence to v$session

SAMPLE_ID

ID of ASH Sample

SAMPLE_TIME

Time of ASH Sample

IS_AWR_SAMPLE

New in 11gR2

SESSION_ID

V$SESSION.SID

SESSION_SERIAL#

V$SESSION.SERIAL#

USER_ID V$SESSION.USER#
SQL_ID \
IS_SQL_ID_CURRENT New in 11gR2
SQL_CHILD_NUMBER x/

FORCE_MATCHING_SIGNATURE

not on V$SESSION

SQL_OPCODE \
TOP_LEVEL_SQL_ID New in 11gR1
TOP_LEVEL_SQL_OPCODE New in 11gR1

SQL_PLAN_HASH_VALUE

not on V$SESSION

SQL_PLAN_LINE_ID New in 11gR1
SQL_PLAN_OPERATION New in 11gR1
SQL_PLAN_OPTIONS New in 11gR1

SQL_EXEC_ID

' New in 11gR1

SQL_EXEC_START

' New in 11gR1

PLSQL_ENTRY_OBJECT_ID J
PLSQL_ENTRY_SUBPROGRAM_ID ¢
PLSQL_OBJECT_ID %
PLSQL_SUBPROGRAM_ID \

SERVICE_HASH

V$ACTIVE_SERVICES.NAME_HASH

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 6

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

SESSION_TYPE

V$SESSION.TYPE

SESSION_STATE

Waiting/On-CPU

QC_SESSION_ID

Parallel query co-ordinator

QC_INSTANCE_ID \
QC_SESSION_SERIAL# New in 11gR1
BLOCKING_SESSION %

BLOCKING_SESSION_STATUS

VALID - blocking session within the same
instance

GLOBAL - blocking session in another
instance.

BLOCKING_SESSION_SERIAL#

V$SESSION.SERIAL# of blocking session

EVENT

\/

EVENT_ID

From VSEVENT_NAME

EVENTH#

SEQ#

PITEXT

P1

P2TEXT

P2

P3TEXT

P3

WAIT_CLASS

WAIT_CLASS_ID

WAIT_TIME

TIME_WAITED

< | 2| 2| <2 <2 < < <2 <2| <| =< =

XID

Not on V$SESSION

REMOTE_INSTANCE#

New in 11gR1

CURRENT_OBJ}#

V$SESSION.ROW_WAIT_OBJ#

CURRENT_FILE#

V$SESSION.ROW_WAIT_FILE#

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 7

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

CURRENT_BLOCK#

V$SESSION.ROW_WAIT_BLOCK#

CURRENT_ROW#

\ New in 11gR1

CONSUMER_GROUP_ID New in 11gR1
PROGRAM V

MODULE \

ACTION \

CLIENT_ID V$SESSION.CLIENT_IDENTIFIER
FLAGS Undocumented
IN_CONNECTION_MGMT New in 11gR1
IN_PARSE New in 11gR1
IN_HARD_PARSE New in 11gR1
IN_SQL_EXECUTION New in 11gR1
IN_PLSQL_EXECUTION New in 11gR1
IN_PLSQL_RPC New in 11gR1
IN_PLSQL_COMPILATION New in 11gR1
IN_JAVA_EXECUTION New in 11gR1
IN_BIND New in 11gR1
IN_CLOSE_CURSOR New in 11gR1
IN_SEQUENCE_LOAD New in 11gR2
CAPTURE_OVERHEAD New in 11gR2
REPLAY_OVERHEAD New in 11gR2
IS_CAPTURED New in 11gR2
IS_REPLAYED New in 11gR2
MACHINE ' New in 11gR2
PORT ' New in 11gR2
ECID ' New in 11gR2
TM_DELTA_TIME New in 11gR2

TM_DELTA_CPU_TIME

New in 11gR2

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 8

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

TM_DELTA_DB_TIME New in 11gR2
DELTA_TIME New in 11gR2
DELTA_READ_I0_REQUESTS New in 11gR2
DELTA_WRITE_IO_REQUESTS New in 11gR2
DELTA_READ_I0_BYTES New in 11gR2
DELTA_WRITE_IO_BYTES New in 11gR2
DELTA_INTERCONNECT BYTES New in 11gR2
PGA_ALLOCATED New in 11gR2
TEMP_SPACE_ALLOCATED New in 11gR2

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 9

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

Comparison with SQL Trace

ASH and SQL*Trace are not the same thing, but both are valuable tools for finding out about
where processes spend time.

SQL*Trace (or event 10046 as we used to call it) has been my weapon of choice for solving
performance issues for a very long time, and it is extremely effective, and there is still a place
for it.

There are difficulties with using SQL trace, especially in a production environment.

e Firstly, it does have a run time overhead. You could afford to trace a single process,
but you certainly couldn’t trace the entire database.

e You have to work with trace in a reactive way. You will probably not already be
tracing a process when you experience a performance problem, so you need to run
the process again and reproduce the poor performance with trace.

o Trace will tell you if a session is blocked waiting on a lock. However, it will not tell
you who is blocking you. ASH will do this (although there are limitations).

o Atrace file records everything that happens in a session, whereas ASH data samples
the session every seconds. Short-lived events will be missed, so the data has to be
handled statistically (see page 14).

e There are problems with both approaches if you have the kind of application where
you have lots of different SQL statements because the application uses literal values
rather than bind variables (and cursor sharing is EXACT).

e Oracle’s TKPROF trace file profiler cannot aggregate these statements, but | have
found another called ORASRP (www.oracledba.ru/orasrp) that can. With ASH, you
will see different SQL_IDs, but it can be effective to group statements with the same
execution plan.

¢ You may have trouble finding the SQL text in the SGA (or via the DBMS_XPLAN
package) because it has already been aged out of the library cache. You may have
similar problems with historical ASH data because the statement had been aged out
when the AWR snapshot was taken.

o Atrace file, with STATISTICS _LEVEL set to ALL, will give you timings for each
operation in the execution plan. So, you can see where in the execution plan the time
was spent. ASH will only tell you how long the whole statement takes to execute,
and how long was spent on which wait event.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 10 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

http://www.oracledba.ru/orasrp

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Through the rest of this document you will see SQL_I1Ds. However, in a SQL trace
the statements are identified by hash_value. Those hash values do not show up if you
profile your trace file with tkprof, but they do if you use OraSRP. SQL _ID is just a
fancy representation of hash value, so you can convert froma SQL_ID to a
hash_value. Oracle supply function DBMS_UTILITY.SQLID_TO_SQLHASH)(),
but as the comment on the blog says Tanel’s script is much cooler?.

You can’t get the whole of the SQL_ID back from the hash values (because it is trimmed off),
but you can get the last 5 or 6 characters it help you find or match SQL statements3

2 See Tanel Poder’s blog: http://blog.tanelpoder.com/2009/02/22/sql_id-is-just-a-fancy-
representation-of-hash-value/

3 And I could never have written this without seeing Tanel’s code!

CREATE OR REPLACE FUNCTION h2i (p_hash_value NUMBER) RETURN VARCHAR2 IS
1_output VARCHAR2(10) := '';
BEGIN
FOR i IN (
SELECT substr('0123456789abcdfghjkmnpgrstuvwxyz',1+floor(mod(p_hash_value/(POWER(32,LEVEL-1)),32)),1) sqlidchar
FROM dual CONNECT BY LEVEL <= LN(p_hash_value)/LN(32) ORDER BY LEVEL DESC
) LooP
1_output := T1_output || i.sqlidchar;
END LOOP;
RETURN T_output;
END;
/

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 11

http://blog.tanelpoder.com/2009/02/22/sql_id-is-just-a-fancy-representation-of-hash-value/
http://blog.tanelpoder.com/2009/02/22/sql_id-is-just-a-fancy-representation-of-hash-value/
http://blog.tanelpoder.com/2009/02/22/sql_id-is-just-a-fancy-representation-of-hash-value/
http://blog.tanelpoder.com/2009/02/22/sql_id-is-just-a-fancy-representation-of-hash-value/

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

Application Instrumentation

Oracle has provided a package called DBMS_APPLICATION_INFO since at least Oracle 8.
This allows you to set two attributes; MODULE and ACTION for a session. That value then
appears in v$session, and can be very useful to help you identify what database sessions relate
to what part of an application. These values are then also captured by ASH.

I cannot over-emphasise the importantance of this instrumentation when analysing
performance issues. Without sensible values in these columns all you have is the program
name. You will probably struggle to identify ASH data for the sessions which are of interest.

These values are not set by default. Instead DBAs are dependent on developers to include
them in their code. For example, Oracle E-Business Suite has built this into the application.

PeopleSoft Specific Instrumentation

However, other application vendors have not. For example, PeopleSoft (prior to PeopleTools
8.50) only write the name of the executable into the module?. This is really no help at all
because the executable name is held in another column.

For batch processes, | have developed a trigger which is fired by batch processes as they start
and which sets a meaningful process name, and puts the unique process instance number into
the action.

CREATE OR REPLACE TRIGGER sysadm.psftapi_store_prcsinstance

BEFORE UPDATE OF runstatus ON sysadm.psprcsrgst FOR EACH ROW

WHEN ((new.runstatus IN(C'3','7','8','9','10"') OR old.runstatus IN(C'7','8"'))
AND new.prcstype != 'PSJob')

BEGIN

psftapi.set_action(p_prcsinstance=>:new.prcsinstance

,p_runstatus=>:new.runstatus

,P_prcsname=>:new.prcsname) ;

EXCEPTION WHEN OTHERS THEN NULL; --exception deliberately coded to suppress all exceptions

From PeopleTools 8.50, Oracle added instrumentation for the on-line part of the application.

In PeopleTools 8.52, further instrumentation was added for Application Engine. The
Application Engine program name, section name, step name and step type are written to the
ACTION. The PeopleSoft Operator ID is stored in CLIENT _ID

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 12 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

The results of this instrumentation are visible in Enterprise Manager

1g the shaded box to change the tirme period for the detail section below.
100

eng: RO - fast object reuse
W log file sync
reliable message
latch: cache buffers chains
db file scattered read

local write wait
db file parallel read
db file sequential read

cPU Used

11:50PM 11:55PM 12:004M 12:094M 1Zi10AM 12:154M 12:204M 12:254M 1213041 12:354M 12:404M 12:454M

Detail for Selected 5 Minute Interval

Start Time 17-May-2010 00:34:13 V\EM{ Show Aggregated Data v Run ASH Report

) Previous | 1-10 of 67 % | Mext 10 &

Activity (%) T JsoL i |SOL Command__|Plan Hash Value|Module JAction |Client D
I) 72,98 7a8E2909337 ud? TRUMCATE TABLE 3070778916 SCRTY_SJTDLY PI=2973767 Processing

11.46 UNKMOWYN o SCRTY_SJTOLY PE=2973767 Processing

| 1.09 BtjffmOn28q7p TRUNCATE TABLE 3337350833 SCRTY_SJTDLY PI=2973767 Processing

|73 9ji7ddeizidp UPDATE 1016177545 SCRTY_SJTOLY PIE29737E7 Processing

| .73 Bojudbntdc1Bl DELETE 2123667380 SCRTY_SJTDLY PE=2973767 Processing

| .73 8rm816jhyS0cel UPDATE 1104483064 SCRTY_SJTDLY PI=2973767 Processing

|36 2ZiyZdniszgh) INSERT 2973184850 SCRTY_SJTOLY PIEPS7PET Processing

| .36 BtvuwiObhBuuy INSERT 2973124850 SCRTY_SJTDLY PI=2973767 Processing

|

36 310fa9mng2utd INSERT 3422340667 SCRTY_SJTDLY PI=2973767 Pracessing

Later, you will see the value of this instrumentation as | use it to join a combination of data in
the application about batch processes with the ASH repository to identify where a given
process spent time.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 13

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Using SQL to Analyse ASH Data

Statistical Analysis Approach

03 NOVEMBER 2014

ASH data is a sample and so must be handled statistically. If something happens that lasts 10

seconds, then it will be sampled about 10 times.

However, not everything that happens is captured. 1f something happens that last less than a
second, but it happens very frequently, some of them will be captured. For example, if
something happens which lasts for 1/10™ of a second, but happens 100 times then you would
expect to capture it about 10 times. In all, the 100 occurences lasted 10 times. So by counting
each ASH row as worth 1 seconds of wait time you come out at the right answer. This is what

I mean by taking a statistical approach.

So, if you are looking at a current or recent process you the raw ASH data, and the query that
you have to construct when working with is something along these lines

SELECT

WHERE
GROUP BY ..

, SuM(1l) ash_secs
FROM v$active_session_history

And if you are going further back in time then you have to work with the historical data, only
1in 10 rows are kept, so now each row is worth 10 seconds

SELECT

WHERE
GROUP BY ..

, SUM(10) ash_secs
FROM dba_hist_active_sess_history

And of course, you won’t see recent data in this view until there is an AWR snapshot for the

ASH buffer fills to 2/3 and flushes.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 14

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

ASH History is exposed by the view DBA_HIST_ACTIVE_SESSION_HISTORY. Itis
stored in the table SYS. WRH$_ACTIVE_SESSION_HISTORY which is range partitioned
on DBID and SNAP_ID. To make the SQL work efficiently you need to specify the snhap ID,
for that | use dba_hist_snapshotS to identify the range of snapshots that you want to use, and
the partitions first so that you eliminate unwanted partitions. You may need the LEADING
hint to force Oracle to start with the snapshot view, and then the USE_NL hint to force it to
work through each snapshot, which will guarantee a single partition access. Otherwise your
queries could run for ever!

SELECT /*+LEADING(X) USE_NL(Ch)*/ ..

, SUM(10) ash_secs

FROM dba_hist_active_sess_history h
, dba_hist_snapshot x

WHERE x.snap_id = h.snap_id

AND x.dbid = h.dbid

AND x.instance_number = h.instance_number
AND x.end_interval_time >= ..

AND x.begin_interval_time <= ..

AND

GROUP BY ..

Objectives

Ask yourself what you are trying to find out.

e Are you interested in a single database session, or a group of sessions, or the whole
database?

e All ASH Data —v- One Wait Event

e Time Window

PeopleSoft Specific ASH Queries

To get the most out of ASH you need to know how to relate database session to processes.
That starts with using DBMS_APPLICAITON_INFO to register the process hame and
process instance of batch processes on the session (see page 12). But there is more.

Batch Processes

The start and end time of a batch process is recorded on the process request table, and you can
use that to identify the snapshots, and thence the active session history.

5

SELECT /*+LEADING(r x h) USE_NL(h) ~*/
r.prcsinstance
h.sql_id
-, h.sql_child_number
h.sql_plan_hash_value
(CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400 exec_secs

SUM(10) ash_secs

FROM dba_hist_snapshot x

5> Specify a hint to ensure good performance. Start with the process request table, then go to
the snapshots, finally go to the ASH data and look it up with a nested loop join.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 15

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

AND

AND

AND

AND

AND

AND

/

ORDER BY 1

dba_hist_active_sess_history h

sysadm.psprcsrqgst r

x.end_interval_time >= r.begindttm
X.begin_interval_time <= r.enddttm

h.sample_time BETWEEN r.begindttm AND r.enddttm8
h.snap_id = x.snap_id

h.dbid = x.dbid

h.instance_number = x.instance_number

h.module = r.prcsname

10

h.action LIKE 'PI='||r.prcsinstancel|'%"

11

r.prcsinstance = 1956338

GROUP BY r.prcsinstance, r.prcsname, r.begindttm, r.enddttm, h.sql_id, h.sql_plan_hash_value

Application Engine from PeopleTools 8.52

From PeopleTools 8.52 there is additional instrumentation of the session in Application
Engine processes.

e Module is now set to string composed of PSAE.<name of scheduled Application
Engine program>.<session ID number>. The Application Engine name is as it
appears in Process Monitor. The session ID number is the operation system process
ID of the client process. It is recorded in PSPRCSQUE.SESSIONIDNUM.

e Action is set to the concatenation of the Application Engine program name, section
name, step name and step type. The string can be truncated if it is too long.

Consequently a slightly different SQL query is required to analyse ASH data for these
processes!2. This construction is only applicable to Application Engine from PeopleTools
8.52, and will not work on Application Engine in earlier versions of PeopleTools, the
construction in the previous section is still applicable to other process types in PeopleTools
8.52.

From (

13

select /*+leading(r q x h) use_n1(h)*/

r.prcsinstance

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 16

6 This table described the process

7 Identify the AWR snapshots that coincide with the period that the process was running

8 Filter ASH data to exactly the period that the process was running.

9 Filter ASH data by Module which is the name of the process on the process request table
10 Filter ASH data by Action which includes the process instance number

11 Uniquely identify process

12 However, most of the examples in this document were written against PeopleTools 8.49.

13 Note that the LEADING hint has been changed to include PSPRCSQUE as the second table
visited.

03 NOVEMBER 2014

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

, h.action, h.sql_id

, h.sql_plan_hash_value

, (CAST(enddttm AS DATE)-CAST(begindttm AS DATE))*86400 exec_secs
, sum(10) ash_secs

from DBA_HIST_SNAPSHOT X

, DBA_HIST_ACTIVE_SESS_HISTORY h

, sysadm.psprcsrgst r

, sysadm.psprcsque q14

WHERE r.prcsinstance = q.prcsinstance

and r.prcsinstance = 10622259

and r.prcsname = 'TL_TIMEADMIN'

AND X.END_INTERVAL_TIME >= r.begindttm

And x.begin_interval_time <= r.enddttm

and h.SNAP_id = X.SNAP_id

and h.dbid = x.dbid

and h.instance_number = x.instance_number

and h.module 1ike 'PSAE.'||r.prcsname||'."| ICI.sessicmidnuml5
and h.sample_time BETWEEN r.begindttm AND r.enddttm

group by r.prcsinstance, r.prcsname, r.begindttm, r.enddttm
, h.action

, h.sql_id

, h.sql_plan_hash_value

) where ash_secs>exec_secs/100

order by ash_secs desc

/
Now it is possible to include the step reference from the Action in the ASH profile. Of course
it is likely, as in this example, that one step produces different SQL IDs on different
executions either due to dynamically generated SQL, or different bind variables values in
different executions being resolved to different litteral values by Application Engine.
sqQL Plan Exec ASH
PRCSINSTANCE ACTION SQL_ID Hash value secs secs
10622259 TL_TIMEADMIN.END.STATS2.S 636f1jtg06rjk 2915643330 5901 320
10622259 TL_TIMEADMIN.END.STATS2.S cbrjl8vrfb2qj 821036523 5901 320
10622259 FO_TL_OVR_RT.MAIN.Step03.S 4rgvvjm5jtlgn 2867360147 5901 300
10622259 TL_TRPROFILE.TRPROFIL.End_Effd. gbwayc9acljxu 3317352158 5901 300
10622259 FO_TL_OVR_RT.MAIN.Step05.S 2zyz4zr0js2j8 1281985392 5901 250
10622259 TL_TA001100.TA001120.Step09A.S bcrxp3xps3466 537875261 5901 120
10622259 TL_TA000900.TA000960.Stepl30.S 93j67wxxk6gut5 334959449 5901 90
10622259 TL_TA001000.TA001000.Step02.S anmqwa0Osnl8yh 2593881656 5901 80
10622259 FO_TL_OVR_RT.MAIN.Step0l.S faybwvcOpzkvj 2562206473 5901 70

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

14 PSPRCSQUE s also needed to obtain the session ID number and this can be joined to
PSPRCSRQST by PRCSINSTANCE.

15 The combination of process name, session ID number and sample time is not guaranteed to
be unique. It is possible that two instances of the same program with the same session ID
number could run on different Process Schedulers on different servers concurrently, although
this is not likely.

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 17

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

1850

On-Line Activity

I have used the PeopleSoft Performance Monitor (PPM) to find a period in time when the

system exhibits degraded performance.

2 MediEn foo bogtion S e Process Time|

Bpplication Server Response Time
[PBAPPS R -a tcluding queuing]

R NETHG
COMPONENT
POGE
BCTION

A

—— 1. [L_MS% EE_TRCH_PROGEL - fL_RPrO_FCH -
Launch Fapsl 3aach Fage

.u A
, Vi

—8—2- rL_MET _EC_TACH_PROGEL - L_RPFD_PCH - Ok
FucpleC e Command Bullon fai Fisld

TL_MGF_SRCH W MARE

Sweondn
@

L A‘/\/Ml’i

A
AN
a

9- FL_M3%_EE_IRCH_FROGEL - L_RFTO_FCH - Dok
Faope= o Command Eullon 'ai Field
DERNED_E FE0 5 AYE_FE

IEMPLOYE CIHR M3
IVERL B_F IPFR.[FCRPT | F mdF amuls. roipl_F e el

ukm -
WERLE_FrFFE.FCRFT Fiscf omua.soip_Fassiy
k) -

—4—8- rL_ME% _EC_TACH_PROGEL - L_RPFD_PCH - Ok

Geakzl Perod sErttime

2 T = -
o
ol o P o
@».5«- &__v *‘»._'_' 9._'\;' .
o+ & 5
& & & & &
o n -
& o & & ot

FucpleCods Command Bullon o) Fisld
ol CCRNED _FL_WEEK FREV_KK_BFH

With on-line activity it is not possible to add module and action instrumentation. At the
moment the program name is copied to module, and that is no advantage at all because |

already have program in the ASH data

Enhancement Request: PeopleSoft added instrumentation for Performance Monitor, the
context information they there use there for a PIA transaction could also be set in
DBMS_APPLICATION_INFO. Combine Component and Page to Module, and set Action as

Action

So, all I can do is query ASH data relating to PSAPPSRYV programs. If you have separte
PSQRYSRYV processes, you can analyse that separately too.

SELECT /*+LEADING(x h) USE_NL(h)*/
h.sql_id
h.sql_plan_hash_value
SuUM(10) ash_secs

FROM dba_hist_snapshot x

5 dba_hist_active_sess_history h

WHERE x.end_interval_time >= TO_DATE('201002010730', 'yyyymmddhh24mi')

AND X.begin_interval_time <= TO_DATE('201002010830', 'yyyymmddhh24mi"')

AND h.sample_time BETWEEN TO_DATE('201002010730", 'yyyymmddhh24mi ')
AND TO_DATE('201002010830", 'yyyymmddhh24mi ')

AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.module Tike 'PSAPPSRV%'

GROUP BY h.sql_id, h.sql_plan_hash_value
ORDER BY ash_secs DESC

/

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 18

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

At least most of the SQL in the on-line application uses bind variables (except for certain bits
of dynamically generated code), so it does aggregate properly in the ASH data.

SQL Plan
SQL_ID Hash value ASH_SECS
7hvaxp65s70qw 1051046890 1360
fdukyw87n6prc 313261966 760
8d56bz2qxwy6]j 2399544943 720
876mfmryd8yv7 156976114 710
bphpwrud1g83t 3575267335 690

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 19

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

XML Report

If you make use of XML reporting, usually to deliverer PeopleSoft Queries then you find that
they are all run through an Application Engine program called PSXPQRYRPT. You can use
the PS_CDM_FILE_LIST table to work out the Report ID that was requested, and you can
look at the report definition (PSXPRPTDEFN) to find the underlying query.

This query just reports run time for a report called XGF_WK LATE. We haven’t added any
ASH data yet.

FROM

WHERE

and

and

/

SELECT r.prcsinstance, r.begindttm, d.report_defn_id, d.ds_type, d.ds_id

and NOT f.cdm_file_type IN('AET','TRC','LOG')

and d.report_defn_id = 'XGF_WK_LATE'
and s.ds_type = d.ds_type

and s.ds_id = d.ds_id

and s.oprid = d.oprid

and begindttm BETWEEN TO_DATE('201001200000', 'yyyymmddhh24mi')

ORDER BY r.begindttm

(CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400 secs
sysadm.psprcsrgst r

sysadm.ps_cdm_file_list f

sysadm.psxprptdefn d

sysadm.psxpdatasrc s

r.prcsname = 'PSXPQRYRPT'

r.prcsinstance = f.prcsinstance

d.report_defn_id = SUBSTR(f.filename,1,instr(f.filename,"'."')-1)

AND SYSDATE -- TO_DATE('201001211600" , 'yyyymmddhh24mi')

1953197 19:56:56 20/01/2010 XGF_WK_LATE QRY XGF_WKLY_LATENESS_RPT 753
1956338 09:01:56 21/01/2010 XGF_WK_LATE QRY XGF_WKLY_LATENESS_RPT 19,283
1956805 09:50:08 21/01/2010 XGF_WK_LATE QRY XGF_WKLY_LATENESS_RPT 16,350

1956925 10:01:28 21/01/2010 XGF_WK_LATE QRY XGF_WKLY_LATENESS_RPT 15,654

. BEGINDTTM Report ID Type Data Source ID SECS

Now | want to see what SQL Statements that were executed by those processes, and what
were their execution plans.

WHERE

SELECT /*+LEADING(r f d x h) USE_NL(h)*/

r.prcsinstance
h.sql_id
h.sql_child_number
h.sql_plan_hash_value
(CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400 exec_secs
SUM(10) ash_secs
dba_hist_snapshot x
dba_hist_active_sess_history h
sysadm.psprcsrgst r
sysadm.ps_cdm_file_Tist f

sysadm.psxprptdefn d

x.end_interval_time between r.begindttm AND r.enddttm

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 20 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

AND d.report_defn_id

AND d.report_defn_id

GROUP BY r.prcsinstance,
ORDER BY 1

/

AND h.sample_time BETWEEN r.begindttm AND r.enddttm
AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.module = r.prcsname

AND h.action LIKE 'PI='||r.prcsinstancel||'%"

AND r.prcsinstance = f.prcsinstance

AND NOT f.cdm_file_type INC'AET','TRC','LOG')

= SUBSTR(f.filename,1,instr(f.filename,"'."')-1)

= 'XGF_WK_LATE'

AND r.prcsname = 'PSXPQRYRPT'
AND r.begindttm BETWEEN TO_DATE('201001200000', 'yyyymmddhh24mi')

AND TO_DATE('201001211600" , 'yyyymmddhh24mi ')

r.prcsname, r.begindttm, r.enddttm, h.sql_id, h.sql_plan_hash_value

©Go-FASTER CONSULTANCY LTD

One of the challenges of PeopleSoft Queries with Operator related row-level security is that a
precate on the operator ID as added to the query, and the operator ID is a litteral value not a
bind variable. That means that if two different operators run the same query, they will

generate different SQL_IDs.

SQL_ID djqflzcypm5fm

SELECT ...

FROM PS_TL_EXCEPTION A, PS_PERSONAL_DATA B, PS_PERALL_SEC_QRY Bl,

WHERE B.EMPLID = B1l.EMPLID AND B1.OPRID = '12345678'

This is rather perverse considering all the other parameters in a query are proper bind
variables, so if a use runs the same query with different paramters that will usually have the

same SQL_ID!

- CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 21

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

Most the SQL_IDs in this report are essentially the same query with different Operator 1Ds,
and you can see that there are 4 different execution plans.

P.I. SQL_ID SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS
1949129 0uj7k70z1s76y 2239378934 619 210
1949819 0sd03jvun7us6 2239378934 336 20
1953197 22kn2sbh7vttnp 2239378934 753 150
1956338 Oxkjtywub2861 2602481067 19283 18550
1956338 998wf4g84dk8z 1041940423 19283 10
1956805 7c7dzavm70yku 2602481067 16350 15690
1956925 1knvx57dnrz29 2602481067 15654 15010
1956925 a9mw8hjxfwczm 338220129 15654 10
1957008 9s2jct0jfmwgy 2602481067 15077 14430
1957008 9s2jct0jfmwgy 3265949623 15077 10
1957087 cwarnq7kv4d84 2602481067 14638 14000
1957691 9nv93p134xjb0 2602481067 13477 12980
1958659 9s2jct0jfmwgy 2602481067 9354 9140
1958697 1bd0fg0fvsfyp 2602481067 9176 8950
1958742 1lknvx57dnrz29 2602481067 8903 8680
1958873 6uzhywllwxwqn 2602481067 8025 7810
1958963 3ydvlrbx5yutl 2602481067 7294 7100
1958963 bct3ytxubyOwm 481148914 7294 10
1959099 Oyf3nx1tm4f18 2602481067 6084 5690
1959525 7gu27skrd5Suvu 2602481067 5621 5230
1959645 6wxbk0Orkgm08a 2602481067 5148 4550
1959716 c7btm765fcrjy 2602481067 4706 4100
1959763 ffjj75qcv9a3a 2602481067 4342 3740
1959773 5c2x8b7urdhzj 2602481067 6361 5810
1960066 46smbgcfcrb8d 2602481067 5766 5210

This is one of those situations where it can be effective to just GROUP BY
SQL_PLAN_HASH_VALUE and work out which execution plan has the most execution
plan. That is might be an undesirable plan and you might want to work out why Oracle is
choosing it, and consider what you are going to do about it.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 22 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

Other Techniques

Monitoring Progress of Processes in Real Time

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

SELECT /*+LEADING(r)*/
r.prcsinstance
) h.sql_id
, h.sqgl_child_number
, h.sql_plan_hash_value
s (NVL(r.enddttm,SYSDATE)-r.begindttm)*86400 exec_secs
, SUM(1) ash_secs
, max(sample_time) max_sample_time
FROM v$active_Session_history h
, sysadm.psprcsrgst r
WHERE h.sample_time BETWEEN r.begindttm AND NVL(r.enddttm,SYSDATE)
AND h.module = r.prcsname
AND h.action LIKE 'PI='||r.prcsinstancel||'%"'
AND r.prcsinstance = 1561519
GROUP BY r.prcsinstance, r.prcsname, r.begindttm, r.enddttm, h.sql_id,
h.sql_plan_hash_value, h.sql_child_number
ORDER BY max_sample_time desc

This was run on a fairly quiet database and the ASH buffer has held 5 hours of data.

Note that Statement 9yj020x2762a9 has clocked 17688 seconds at 4.24pm.

Process child sqQL Plan
Instance SQL_ID No. Hash value
1561509 9yj020x2762a9 0 3972644945
1561509 9yj020x2762a9 0 799518913
1561509 b5r9c04ck29zb 1 149088295
1561509 5vdhh2m8skh86 1 0
1561509 gyuqgSarbj7Zykx 0 3708596767
1561509 0 0
1561509 5jkh8knvxw7k2 0 1549543019
1561509 9pz262n5gbhmk 0 1935542594
1561509 6qg99cfg26kwb 1 3610545376
1561509 gpdwr389mg61h 0 672996088
1561509 gpdwr389mg61h 0 3588911518
1561509 fmbbqm351p05q 0 2548875690
1561509 dwfwa9bsgsnv3 0 2495151791
1561509 dOwu61901pbx4 0 3123499903
1561509 g7psub9favw54 0 2314801731
1561509 cbppam9phSbu8 0 0
1561509 cbppam9ph5bus 0 3488560417
1561509 3cswz2x9ubjm3 0 504495601

Exec

Secs

Secs Last Running

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

18366

17688 19-FEB-10 04.

1 19-FEB-10 11.

1 19-FEB-10 11.

[

i

i

i

[

[

42

~

-

-

1

~

©

10 19-FEB-10 11.

=

-

-

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

19-FEB-10 11.

24.

26.

26.

26.

26.

26.

26.

26.

26.

26.

19.

19.

19.

18.

18.

18.

18.

18.

36

27.

26.

25.

24,

23.

22.

21.

13.

12.

11.

57.

48.

38.

37.

.096 AM

.085 AM

075 AM

065 AM

055 Am

043 Am

033 Am

035 AM

014 Am

931 Am

916 AM

912 Am

771 AM

679 AM

571 AM

551 AM

.541 AM

But later not that the timings for statement 9yj020x2762a9, the timing has gone down. So part
of the ASH data has been purged.

Process

Instance SQL_ID

sQL

child

No.

sQL Plan

Hash value

Exec

Secs

ASH

Secs Last Running

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 23

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

1561509 gdcva48t0lv3m 1 915452742 38153 1 19-FEB-10 09.54.27.827 PM
1561509 3snbjfz6zqcus 1 0 38153 1 19-FEB-10 09.54.26.817 PM
1561509 d4vOgbxwdkgju 1 557995251 38153 1 19-FEB-10 09.54.25.807 PM
1561509 apn21px6qggpk 0 1655174710 38153 1077 19-FEB-10 09.54.24.798 PM
1561509 9md3rncjkx42h 0 2227914321 38153 188 19-FEB-10 09.36.15.070 PM
1561509 62ct90nt8wu8v 0 3123499903 38153 49 19-FEB-10 09.33.04.612 PM
1561509 1gpsnf5s10rom 0 1906339927 38153 1 19-FEB-10 09.32.15.018 PM
1561509 7cal7q7c99dgq 0 3827753996 38153 100 19-FEB-10 09.32.13.994 PM
1561509 64a4yfs60torf 0 1488496785 38153 98 19-FEB-10 09.30.32.216 PM
1561509 5zq8mtxpOnfn8 0 1505304026 38153 1 19-FEB-10 09.28.52.628 PM
1561509 b023phl6myvS5d 0 1416307094 38153 30 19-FEB-10 09.28.51.618 PM
1561509 b023phl6myvS5d 0 51594791 38153 1 19-FEB-10 09.28.21.300 PM
1561509 14k7bgan2vfh8 0 1620828024 38153 1 19-FEB-10 09.28.20.280 PM
1561509 d249835x025rq 0 3746253366 38153 82 19-FEB-10 09.28.19.270 PM
1561509 fsywq5xqgn66nf 0 3232283327 38153 43 19-FEB-10 09.26.54.280 PM
1561509 4z29htzn27cct 0 763665386 38153 14 19-FEB-10 09.24.54.853 PM
1561509 4z29htzn27cct 0 3569720797 38153 1 19-FEB-10 09.24.27.533 PM
1561509 a4zg5sgfc23kt 0 1936785589 38153 78 19-FEB-10 09.24.26.523 PM
1561509 8x1u4hd6jq6pg 0 2692129132 38153 42 19-FEB-10 09.23.07.685 PM
1561509 amakpc5agxvh4 0 3033962754 38153 3 19-FEB-10 09.22.25.207 PM
1561509 8za7232uSpnrf 0 3717166321 38153 13296 19-FEB-10 09.22.21.167 PM
1561509 8za7232uSpnrf 0 2937741215 38153 1 19-FEB-10 05.38.13.085 PM
1561509 8msvfudz3bclw 0 1444355751 38153 24 19-FEB-10 05.38.11.939 PM
1561509 Sfvtbncfpkbuu 0 1444355751 38153 32 19-FEB-10 05.37.47.615 PM
1561509 59sdxn718fs8w 0 1746491243 38153 11 19-FEB-10 05.37.13.236 PM
1561509 gObyOmjld6dy?2 0 2128929267 38153 1 19-FEB-10 05.37.02.049 PM
1561509 7sx5plug5agl2 1 2873308018 38153 1 19-FEB-10 05.37.01.033 PM
1561509 9yj020x2762a9 0 3972644945 38153 13295 19-FEB-10 05.36.59.620 PM
And if I want to look at an execution plan
SELECT DISTINCT 'SELECT * FROM table(dbms_xplan.display_cursor('''||sql_id||"'"","'||sql_child_number]||"',''ADVANCED''));"
FROM (

To generate this command

SELECT * FROM table(dbms_xplan.display_cursor('9yj020x2762a9"',0, 'ADVANCED"'));

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 24

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

Developers not Using Bind Variables

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

This is what happens when developers do not use Bind Variables. It happens in PeopleSoft
Application Engine programs if developers do not use the ReUse statement option, which is
not enabled by default. It can also happen when a process uses dynamically generated SQL.

| started with my standard query for analysing a named process.

exec_secs
’

FROM
’

WHERE
And

AND

and

AND

AND

AND

AND

AND
GROUP BY

[
h.
h.
(CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400

SELECT /*+LEADING(r x h) USE_NL(h)*/

prcsinstance
sql_id
sql_plan_hash_value

SUM(10) ash_secs
dba_hist_snapshot x
dba_hist_active_sess_history h

sysadm.psprcsrqst r

x.end_interval_time >= r.enddttm

x.begin_interval_time <= r.enddttm
h.sample_time BETWEEN r.begindttm AND r.enddttm
h.snap_id = x.snap_id
h.
h
h
h
r
r

dbid = x.dbid

.instance_number = X.instance_number
.module = r.prcsname

.action LIKE 'PI='||r.prcsinstance||'%'
.prcsname = 'XXES036'

.prcsinstance, r.prcsname, r.begindttm, r.enddttm
, h.sql_id, h.sql_plan_hash_value
ORDER BY ash_secs DESC

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 25

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

I got lots of SQL statements with the same execution plan. That is going to happen when the
statements are very similar, and/or when the only differences are the values of literals in the
SQL.

SQL*Trace profiled TKPROF has the same problem. This is a challenge that | face very
frequently, and ORASRP is a better profiling tool.

PRCSINSTANCE SQL_ID SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS
50002824 0 10306 50
50002824 2ybtak62vmx58 2262951047 10306 20
50002824 ck3av6cnquwfc 2262951047 10306 20
50002824 gvys6kd9fgn7u 2262951047 10306 20
50002824 7ymcbn6q8utj8 2262951047 10306 10
50002824 9qud2n3qq7nzr 2262951047 10306 10
50002824 6pxvns97mlfua 2262951047 10306 10
50002824 5ngqj5zg8vbz8 2262951047 10306 10
50002824 9zp6bnndfvn66b 2262951047 10306 10
50002824 15kfs3c3005xm 2262951047 10306 10
50002824 4qvhpygc7cq2t 2262951047 10306 10
50002824 23yc8dcz9z4yj 2262951047 10306 10
50002824 bn8xczrvs2hpr 2262951047 10306 10
50002824 9g6k9dnrjap08 2262951047 10306 10
50002824 lart8dhzbvpwt 2262951047 10306 10
50002824 69qj337xnr5y4 2262951047 10306 10
50002824 77rx2ctnzwcgf 2262951047 10306 10
50002824 5p5tvh4wfplur 2262951047 10306 10

So now, | will remove SQL ID FROM my query, and just GROUP BY SQL Plan Hash Value

SELECT /*+LEADING(r x h) USE_NL(Ch)*/
r.prcsinstance
, h.sql_plan_hash_value
, (CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400
exec_secs
, SuM(10) ash_secs
FROM dba_hist_snapshot x
s dba_hist_active_sess_history h
, sysadm.psprcsrgst r

WHERE x.end_interval_time >= r.enddttm

And x.begin_interval_time <= r.enddttm

AND h.sample_time BETWEEN r.begindttm AND r.enddttm
and h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.module = r.prcsname

AND h.action LIKE 'PI='||r.prcsinstance]||"'%"'

AND r.prcsname = 'XXES036'

GROUP BY r.prcsinstance, r.prcsname, r.begindttm, r.enddttm

, h.sql_plan_hash_value
ORDER BY ash_secs DESC

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 26 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Now, most of my time is in one execution plan.

PRCSINSTANCE SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS
50002824 2262951047 10306 2300
50002824 0 10306 60
50002824 3085938243 10306 20
50002824 563410926 10306 10
50002824 1068931976 10306 10

Now, | need to look at at least one of those SQL statements with that plan

SELECT * FROM table(dbms_xplan.display_awr('9vnanSkgshlaq', 2262951047 ,NULL, 'ADVANCED'));

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 27

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

This query groups the SQL by SQL_ID and SQL PLAN hash plan, but reports the total
amount of time for each plan in ASH, it ranks the statements within each plan by the amount
of time recorded against statements captured by AWR.

SELECT 'SELECT * FROM
table(dbms_xplan.display_awr('"'||sql_id||"'"'"',"||sql_plan_hash_value]||"',NULL,"'"ADVANCED''))/*"'||tot_ash_secs|]|"',"]|]|
tot_awr_secs||"'*/;"'
from (
SELECT ROW_NUMBER()over (PARTITION BY x.sql_plan_hash_value order by x.awr_secs desc) as ranking
, x.sql_id, x.sql_plan_hash_value
, SUM(x.ash_secs) over (PARTITION BY x.sql_plan_hash_value) tot_ash_secs
, SUM(x.awr_secs) over (PARTITION BY x.sql_plan_hash_value) tot_awr_secs
y COUNT(distinct sql_id) over (PARTITION BY x.sql_plan_hash_value) sql_ids
FROM (
SELECT h.sql_id
, h.sgl_plan_hash_value
) SUM(10) ash_secs
y 10*count(t.sql_id) awr_secs
from DBA_HIST_SNAPSHOT X
s DBA_HIST_ACTIVE_SESS_HISTORY h
LEFT OUTER JOIN dba_hist_sqltext t16

ON t.sql_id = h.sql_id

WHERE x.end_interval_time >= TRUNC(SYSDATE, 'mm')
AND x.begin_interval_time <= TRUNC(SYSDATE, 'mm')+7
AND h.sample_time BETWEEN TRUNC(SYSDATE, 'mm') AND TRUNC(SYSDATE, 'mm')+7
and h.snap_id = x.snap_id
and h.dbid = x.dbid
and h.instance_number = x.instance_number
and h.module = h.program
group by h.sql_id, h.sql_plan_hash_value
) x
)y
where y.ranking = 1

and tot_ash_secs > 900
order by tot_ash_secs desc, ranking

/

RANKING SQL_ID SQL_PLAN_HASH_VALUE TOT_ASH_SECS TOT_AWR_SECS SQL_IDS

1 8mkvraydrxycn 0 38270 480 7417
1 027gsfj7n71lcy 1499159071 4230 4230 118
1 cxwz9m3aukdy7 1898065720 4190 4190 19819
1 9513hhulvucxz 2044891559 3590 3590 1

16 By outer joining the ASH data to DBA_HIST_SQLTEXT we can check whether the
statement was captures by AWR

17 The first statement is a special case. There is no plan — probably because it’s a PL/SQL
function. There were 74 statements, but in reality they will all be totally different..

18 One SQL, one plan, this is a shareable SQL_ID, or it did just execute once.

19 This is many statements with the same plan, at least 198.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 28 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

1 95dx0mkjq38v5 1043916244 3450 3450 23

SELECT
SELECT
SELECT
SELECT
SELECT

* FROM
* FROM
* FROM
* FROM

* FROM

table(dbms_xplan.display_awr('8mkvraydrxycn',0,NULL, 'ADVANCED'))/*38270,480%*/;

table(dbms_xplan.display_awr('027qsfj7n71lcy',1499159071,NULL, 'ADVANCED'))/*4230,4230%/;
table(dbms_xplan.display_awr('cxwz9m3auk4y7',1898065720,NULL, 'ADVANCED'))/*4190,4190%/;
table(dbms_xplan.display_awr('9513hhulvucxz',2044891559,NULL, 'ADVANCED'))/*3590,3590%/;
table(dbms_xplan.display_awr('95dx0mkjq38v5',1043916244,NULL, 'ADVANCED'))/*3450,3450%/;

How Many Executions?

Oracle 10g

In 10g you cannot directly determine the number of executions from ASH data. Here is an
example from OEM. This truncate statement is consuming a lot of time. But it isn’t a single

execution. It is a huge number of small executions.

Drag the shaded box to change the time period for the detail section belaw.
100

% Activity
-
S

11:30PM 11:93PM 1zioDAM

12:054M

1Zi10AM 1219AM 12:z0aM

Detail for Selected 5 Minute Interval

Stant Time 17-May-2010 00:34:13 View Show Aggregated Data v | [Run ASH Report

12:294M

© Previous | 1-10 of 67 | Mext 10 &

enq: RO - fast object reuse

B local write wait

db file parallel read
B db file sequential read

123000 12itAM 1z4oAM 12:43AM B cPUUsed

Activity (%)« |soL D |soL Command _|Plan Hash Value|Module |action |Client 1|

I | 7259 7aE2905337ud7 TRUNCATE TABLE 3070778316 SCRTY_SJTDLY PI=2973767. Processing

1146 UNKNOWN o SCRTY_SJTDLY PI=2973767Processing

11.09 Bifmdn2807p TRUNCATE TABLEZ37360633 SCRTY_SJTDLY PI=2973767 Frocessing

1.73 9ci7dduizidy UPDATE IOIBI77645 SCRTY_SJTDLY PI=2G73767 Processing
Oracle 119

However, in 11g there is a new column sql_exec_id in the v$active_session_history and
dba_hist_active_sess_history. Each execution of a statement gets a unique execution ID.
Counting the number of distinct execution IDs determines the number of executions.

From

WHERE

AND

and

AND

and

select /*+leading(x h) use_n1(h)*/

h.program

h.sql_id

h.sql_plan_hash_value

sum(10) ash_secs

COUNT(distinct xid) XIDs
COUNT(distinct h.sql_exec_id) Execs
count(distinct h.session_id) users
minCh.sample_time)+0 min_sample_time
max (h.sample_time)+0 max_sample_time
DBA_HIST_SNAPSHOT X
DBA_HIST_ACTIVE_SESS_HISTORY h
X.END_INTERVAL_TIME >= TO_DATE('201102211540", 'yyyymmddhh24mi')
X.begin_interval_time <= TO_DATE('201102211510', 'yyyymmddhh24mi')

h.sample_TIME

v

= TO_DATE('201102211510"', 'yyyymmddhh24mi')
h.sample_time <= TO_DATE('201102211540"', 'yyyymmddhh24mi')

h.SNAP_id = X.SNAP_id

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 29

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

and h.dbid = x.dbid
and h.instance_number = x.instance_number
and h.user_id != 0 /*omit oracle shadow processes*/

group by h.program, h.sql_id, h.sql_plan_hash_value

order by ash_secs desc

/
So | can see that these statements burnt about 3020 and 320 seconds. This query has counted
297 and 32 executions respectively.
sqQL Plan ASH
PROGRAM SQL_ID Hash value Secs XIDS EXECS USERS First Running Last Running
t_async.exe 7q90raOvmd9xx 2723153562 3020 0 297 20 15:10:21 21/02/2011 15:37:21 21/02/2011
t_async.exe 6mw25bgbhlstj 1229059401 320 0 32 17 15:19:49 21/02/2011 15:37:31 21/02/2011

However, remember that because this query was based on dba_hist_active_sess_history there
is one sample per 10 seconds, so each row is counted as 10 seconds. The number of
executions can never be calculated as being greater than the number of ASH records. So
when the number of executions is close to or the same as the number of ASH records it is
likely that there are actually many more executions that are recorded here.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 30 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

How Many Transactions?

You cannot tell how many times a statement has executed in 10g. This becomes possible in
11g. However, you do have the transaction ID is recorded in the ASH data, but only if the
statement is a part of a transaction.

column Tast_sample_time format a25
column first_sample_time format a25
select /*+leading(r h) use_nl1(h)*/
r.prcsinstance
--, h.sql_id
--, h.sq1_child_number
o h.xid
, h.sql_plan_hash_value
, (NVL(r.enddttm,SYSDATE)-r.begindttm)*86400 exec_secs
, sum(1) ash_secs
, min(sample_Time) first_sample_time
, max(sample_Time) last_sample_time
FROM gv$active_session_history h
. sysadm.psprcsrgst r
WHERE h.sample_time BETWEEN r.begindttm AND NVL(r.enddttm,SYSDATE)
AND h.module = r.prcsname
AND h.action LIKE 'PI='||r.prcsinstance||'%"
AND r.prcsinstance = 10026580
AND h.sql_id = 'dungu07axr0z5'
group by r.prcsinstance, r.prcsname, r.begindttm, r.enddttm
, h.sql_id, h.sql_plan_hash_value
, h.sql_child_number
, h.xid
--, h.program
--having sum(1) > (NVL(r.enddttm,SYSDATE)-r.begindttm)*86400/1000

order by last_sample_time, ash_secs desc

/
One statement executed 4 at least times in the same process, with the same
process, but as a part of 3 different transactions. Note that the last entry is not
part of any transaction.

PRCSINSTANCE XID SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS FIRST_SAMPLE_TIME LAST_SAMPLE_TIME

10026580 00080026000185A7 461068291 4774 943 23-APR-10 11.13.50.548 23-APR-10 11.29.33.546
10026580 000100250001861A 461068291 4774 906 23-APR-10 11.30.16.590 23-APR-10 11.45.22.487
10026580 000700280001Cc47 461068291 4774 783 23-APR-10 11.46.06.543 23-APR-10 11.59.09.286
10026580 461068291 4774 775 23-APR-10 11.59.51.325 23-APR-10 12.12.46.056

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 31

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

When Did the Transaction Start

Here is the output for a very similar query at a different time. On these occasions the SQL
starts without a transaction ID, and acquires one later.

sQL Plan ASH Exec
SQL_ID Hash value XID Secs Secs First Running Last Running
7uj72ad03k13k 3087414546 82 1124 28-APR-10 04.42.48.662 PM 28-APR-10 04.44.10.662 PM
7uj72ad03k13k 3087414546 000A001400044C6D 1 1124 28-APR-10 04.44.11.672 PM 28-APR-10 04.44.11
1ng9qkc0zspkh 3423396304 104 1124 28-APR-10 04.44.12.682 PM 28-APR-10 04.45.56.961 PM
1ng9qkc0zspkh 3423396304 0007002D0004116E 5 1124 28-APR-10 04.45.57.971 PM 28-APR-10 04.46.02

The statements involved are monolithic deletes. My interpretation is that it takes a while for
these queries to identify rows to be deleted, and it is not until the first row is deleted that a
transaction is initiated. It is entirely plausible that, depending upon data, statements could run
for a while before finding some data to delete.

SQL_ID 7uj72ad03kl3k, child number O

DELETE /*GPPCANCL_D_ERNDGRP*/ FROM PS_GP_RSLT_ERN_DED WHERE EMPLID BETWEEN :1 AND :2 AND CAL_RUN_ID=
EMPLID IN (SELECT EMPLID FROM PS_GP_GRP_LIST_RUN WHERE RUN_CNTL_ID=:4 AND OPRID=:5) AND EXISTS (SELE
FROM PS_GP_PYE_RCLC_WRK RW WHERE RW.CAL_ID = PS_GP_RSLT_ERN_DED.CAL_ID AND RW.CAL_RUN_ID =
PS_GP_RSLT_ERN_DED.CAL_RUN_ID AND RW.GP_PAYGROUP = PS_GP_RSLT_ERN_DED.GP_PAYGROUP AND RW.EMPLID BETW
AND :7 AND RW.CAL_RUN_ID = :8 AND RW.EMPLID = PS_GP_RSLT_ERN_DED.EMPLID AND RW.EMPL_RCD =

PS_GP_RSLT_ERN_DED. EMPL_RCD)

Plan hash value: 3087414546

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop

| 0 | DELETE STATEMENT | | | | 5 (100) | | | |
| 1 | DELETE | PS_GP_RSLT_ERN_DED | | | | | | |
[* 2| FILTER | | | | | | | |
3	NESTED LOOPS SEMI		1	172	5 (20)	00:00:01		
* 4	HASH JOIN SEMI		1] 131	5 (20)] 00:00:01				
5	PARTITION RANGE ITERATOR		2	164	2 (0)	00:00:01	KEY	KEY
* 6	INDEX RANGE SCAN	PS_GP_RSLT_ERN_DED	2	164	2 (0)	00:00:01	KEY	

[* 7 | TABLE ACCESS FULL | PS_GP_PYE_RCLC_WRK | 15 | 735 | 2 (0)| 00:00:01 | |

| 8 PARTITION RANGE ITERATOR | | 1| 41 | 0 O] | KEY | KEY |
[* 9 | INDEX RANGE SCAN | PS_GP_GRP_LIST_RUN | 1| 41 | 0 O] | KEY | KEY |

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 32 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

PLAN_TABLE_OUTPUT

DELETE /*GPPCANCL_D_PINGRP*/ FROM PS_GP_RSLT_PIN WHERE EMPLID BETWEEN :1 AND :2 AND CAL_RUN_ID=:3 AN
EMPLID IN (SELECT EMPLID FROM PS_GP_GRP_LIST_RUN WHERE RUN_CNTL_ID=:4 AND OPRID=:5) AND EXISTS (SELE
FROM PS_GP_PYE_RCLC_WRK RW WHERE RW.CAL_ID = PS_GP_RSLT_PIN.CAL_ID AND RW.CAL_RUN_ID =

PS_GP_RSLT_PIN.CAL_RUN_ID AND RW.GP_PAYGROUP = PS_GP_RSLT_PIN.GP_PAYGROUP AND RW.EMPLID BETWEEN :6 A

AND RW.CAL_RUN_ID = :8 AND RW.EMPLID = PS_GP_RSLT_PIN.EMPLID AND RW.EMPL_RCD = PS_GP_RSLT_PIN.EMPL_R

Plan hash value: 3423396304

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop

| 0 | DELETE STATEMENT | | | | 5 (100) | | |

| 1 | DELETE | PS_GP_RSLT_PIN | | | | | | |
[* 2| FILTER | | | | | | |

3	NESTED LOOPS SEMI		1] 170	5 (20)] 00:00:01				
* 4	HASH JOIN SEMI		1] 129	5 (20)] 00:00:01				
5] PARTITION RANGE ITERATOR		31	2480	2 (0)	00:00:01	KEY	KEY	
6	PARTITION LIST SINGLE		31	2480	2 (0)	00:00:01	KEY	KEY
=7 INDEX RANGE SCAN | PS_GP_RSLT_PIN | 31 | 2480 | 2 (0)| 00:00:01 | KEY

[* 8 | TABLE ACCESS FULL | PS_GP_PYE_RCLC_WRK | 15 | 735 | 2 (0)] 00:00:01 | |

| 9| PARTITION RANGE ITERATOR | | 1| 41 | 0 (] | KEY | KEY |
|* 10 | INDEX RANGE SCAN | PS_GP_GRP_LIST_RUN | 1| 41 | 0 (] | KEY | KEY |

2 - filter((:7>=:1 AND :6<=:2 AND :6<=:7 AND :1<=:2 AND :8=:3))
4 - access("RW"."CAL_ID"="PS_GP_RSLT_PIN"."CAL_ID" AND "RW"."CAL_RUN_ID"="PS_GP_RSLT_PIN"."CAL_RU
AND "RW"."GP_PAYGROUP"="PS_GP_RSLT_PIN"."GP_PAYGROUP" AND "RW"."EMPLID"="PS_GP_RSLT_PIN"."EMP
"RW" . "EMPL_RCD"="PS_GP_RSLT_PIN"."EMPL_RCD")
7 - access("EMPLID">=:1 AND "PS_GP_RSLT_PIN"."CAL_RUN_ID"=:8 AND "EMPLID"<=:2)
filter (("CAL_RUN_ID"=:3 AND "PS_GP_RSLT_PIN"."CAL_RUN_ID"=:8 AND "PS_GP_RSLT_PIN"."EMPLID">=:
"PS_GP_RSLT_PIN"."EMPLID"<=:7))
8 - filter(("RW"."CAL_RUN_ID"=:8 AND "RW"."CAL_RUN_ID"=:3 AND "RW"."EMPLID">=:6 AND "RW"."EMPLID"
AND "RW"."EMPLID">=:1 AND "RW"."EMPLID"<=:2))
10 - access("RUN_CNTL_ID"=:4 AND "OPRID"=:5 AND "EMPLID"="EMPLID")

filter (("EMPLID">=:1 AND "EMPLID"<=:2 AND "EMPLID">=:6 AND "EMPLID"<=:7 AND "EMPLID"="EMPLID"

- dynamic sampling used for this statement

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 33

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Single Wait Event

03 NOVEMBER 2014

Earlier we looked at an example of on-line activity, and | used the PeopleSoft Performance
Monitor to identify a period when degradation in performance was noticed (see Application
Engine from PeopleTools 8.52 on page 16). | want to look at the behaviour of the database in

the same period.

Oracle Enterprise Manager will give you a graphical representation of the ASH data. | often
graph wait event data collected by AWR in excel20,

[Time Waited|

14000

AWR Wait Event History

12000

10000 |

8000 A

Event Name

A

Time Waited (s)

Wait Class
— db file sequential read - User /0

—— eng: TX - row lock contention - Application

4000 / \
2000

=

NN Vi

6:00 8:00
Snapshot End Time

Snapshot Start Time

10:00 12:00

14:00

L db file scattered read - User /0

According to AWR, we have as many of 12 concurrent sessions waiting on this event.

Time Waited Event Name Wait Class
db file sequential read |enqg: TX - row lock contention

Snapshot Start Time User I/O Application
Mon 1.2.10 06:00 2,329.153 16.822
Mon 1.2.10 06:15 3,323.358 174.772
Mon 1.2.10 06:30 4,397.850 41.172
Mon 1.2.10 06:45 5,037.319 1.595
Mon 1.2.10 07:00 6,451.124 72.692
Mon 1.2.10 07:15 8,226.684 205.765
Mon 1.2.10 07:30 9,274.853 196.430
Mon 1.2.10 07:45 9,315.794 99.286
Mon 1.2.10 08:00 10,267.237 233.664
Mon 1.2.10 08:15 9,084.140 607.859
Mon 1.2.10 08:30 8,404.167 845.342
Mon 1.2.10 08:45 11,145.149 746.139
Mon 1.2.10 09:00 10,097.621 352.595
Mon 1.2.10 09:15 7,625.934 298.300
Mon 1.2.10 09:30 8,876.006 896.529

Grand Total 113,856.388 4,788.961

20 There are various advantanges to this approach, see http://blog.go-
faster.co.uk/2008/12/graphing-awr-data-in-excel.html

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 34

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

http://blog.go-faster.co.uk/2008/12/graphing-awr-data-in-excel.html
http://blog.go-faster.co.uk/2008/12/graphing-awr-data-in-excel.html

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

A simple variant on the usual query, and we can look for the statement with the highest 1/0
overhead.

SELECT /*+LEADING(x h) USE_NLC(Ch)*/
h.sql_id

, h.sql_plan_hash_value

, SUM(10) ash_secs

FROM dba_hist_snapshot x

, dba_hist_active_sess_history h

WHERE x.end_interval_time <= TO_DATE('201002010830', 'yyyymmddhh24mi"')

AND x.begin_interval_time >= TO_DATE('201002010730", 'yyyymmddhh24mi')

AND h.sample_time BETWEEN TO_DATE('201001261100"', 'yyyymmddhh24mi")
AND TO_DATE('201001261300", 'yyyymmddhh24mi ')

AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = Xx.instance_number
AND h.event = 'db file sequential read'

GROUP BY h.sql_id, h.sql_plan_hash_value
ORDER BY ash_secs DESC

/

So, here at the top statements

SQL Plan
SQL_ID Hash value ASH_SECS
90pp7bcnmz68r 2961772154 2490
81gz2rtabaa8n 1919624473 2450
7hvaxp65s70qw 1051046890 1320
7fk8ragléchOu 3950826368 890
9dzpwkff7zycg 2020614776 840

And just for a laugh, this is the query

SQL_ID 90pp7bcnmz68r

SELECT DISTINCT A.GP_PAYGROUP, M.XGF_REGION_NAME, M.XGF_AREA_NAME, A.LOCATION, B.DESCR, D.DESCR, A.EMPLID,
C.LAST_NAME, C.FIRST_NAME, TO_CHAR(A.TERMINATION_DT,'YYYY-MM-DD'), TO_CHAR(A.LAST_DATE_WORKED, 'YYYY-MM-DD'),
G.PIN_NET_VAL,B.SETID,B.LOCATION, TO_CHAR(B.EFFDT, 'YYYY-MM-DD'),D.SETID,D.DEPTID, TO_CHAR(D.EFFDT, 'YYYY-MM-DD")
FROM PS_JOB A, PS_XGF_JOB_QRY Al, PS_LOCATION_TBL B, PS_PERSONAL_DATA C, PS_PERALL_SEC_QRY Cl, PS_DEPT_TBL D,

PS_XGF_TREE_RP1_VW M, PS_GP_PYE_SEG_STAT G, PS_EMPLMT_SRCH_QRY G1, PS_GP_CAL_RUN_DTL F

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 35

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

WHERE A.EMPLID = Al.EMPLID AND A.EMPL_RCD = Al.EMPL_RCD AND Al.OPRID = 'batchuser' AND C.EMPLID = Cl.EMPLID AND
C1.0PRID = 'batchuser' AND G.EMPLID = G1.EMPLID AND G.EMPL_RCD = G1.EMPL_RCD AND G1.OPRID = 'batchuser' AND (
A.EFFDT = (SELECT MAX(A_ED.EFFDT) FROM PS_JOB A_ED WHERE A.EMPLID = A_ED.EMPLID AND A.EMPL_RCD = A_ED.EMPL_RCD
AND A_ED.EFFDT <= (F.PRD_END_DT+1)) AND A.EFFSEQ = (SELECT MAX(A_ES.EFFSEQ) FROM PS_JOB A_ES WHERE A.EMPLID =
A_ES.EMPLID AND A.EMPL_RCD = A_ES.EMPL_RCD AND A.EFFDT = A_ES.EFFDT) AND A.ACTION = 'DEA' AND A.PER_ORG = 'EMP'
AND F.GP_PAYGROUP = A.GP_PAYGROUP AND F.CALC_TYPE = 'P' AND F.RUN_TYPE <> 'RT MIG' AND F.CAL_IDNT_TS IS NOT NULL
AND F.CAL_IDNT_TS = (SELECT MAX(N.CAL_IDNT_TS) FROM PS_GP_CAL_RUN_DTL N WHERE N.GP_PAYGROUP = F.GP_PAYGROUP AND
N.CALC_TYPE = F.CALC_TYPE) AND ((A.TERMINATION_DT >= F.PRD_BGN_DT AND A.TERMINATION_DT <= F.PRD_END_DT) OR (
A.TERMINATION_DT < F.PRD_BGN_DT AND A.ACTION_DT >= (SELECT TO_DATE(MAX(O.CAL_FINAL_TS)) FROM PS_GP_CAL_RUN_DTL O
WHERE O.GP_PAYGROUP = A.GP_PAYGROUP AND 0.CALC_TYPE = 'P' AND O.CAL_FINAL_TS < (SELECT MAX(P.CAL_IDNT_TS) FROM
PS_GP_CAL_RUN_DTL P WHERE P.GP_PAYGROUP = 0.GP_PAYGROUP AND P.CALC_TYPE = 0.CALC_TYPE)) AND A.ACTION_DT <=
F.PRD_END_DT)) AND B.SETID = A.SETID_LOCATION AND B.LOCATION = A.LOCATION AND B.EFFDT = (SELECT MAX(B_ED.EFFDT)
FROM PS_LOCATION_TBL B_ED WHERE B.SETID = B_ED.SETID AND B.LOCATION = B_ED.LOCATION AND B_ED.EFFDT <=
F.PRD_END_DT) AND C.EMPLID = A.EMPLID AND D.SETID = A.SETID_DEPT AND D.DEPTID = A.DEPTID AND D.EFFDT = (SELECT
MAX(D_ED.EFFDT) FROM PS_DEPT_TBL D_ED WHERE D.SETID = D_ED.SETID AND D.DEPTID = D_ED.DEPTID AND D_ED.EFFDT <=
F.PRD_END_DT) AND M.SETID = A.SETID_DEPT AND M.TREE_NAME = 'DEPT_SECURITY' AND M.DEPTID = A.DEPTID AND G.EMPLID =
A.EMPLID AND G.CAL_RUN_ID = F.CAL_RUN_ID AND G.EMPL_RCD = A.EMPL_RCD AND G.GP_PAYGROUP = A.GP_PAYGROUP AND G.CAL_ID

= F.CAL_ID) ORDER BY 1, 4, 5, 6, 7, 9, 8

Plan hash value: 2961772154

Id	operation	Name	Rows	Bytes	Cost (%CPU)	Time	Pstart	Pstop
0	SELECT STATEMENT				2139 (100)			
1	SORT UNIQUE		1	578	2138 (2)	00:00:03		
2	FILTER I			I				
3] TABLE ACCESS BY INDEX ROWID	PS_SIT_PERSON	2	72	4 (0)	00:00:01			
4	NESTED LOOPS		1 578	2044 (1)	00:00:03			
5	NESTED LOOPS		1 542	2040 (1)	00:00:03			
6	NESTED LOOPS		1 509	2035 (1)	00:00:03			
7	NESTED LOOPS		1	485	2034 (1)	00:00:03		
8	NESTED LOOPS		1	429	2003 (1)	00:00:03		
9	NESTED LOOPS		1	395	2001 (1)	00:00:03		
10	NESTED LOOPS		1] 365	1999 (1)	00:00:03			
11	HASH JOIN		65	19045	1868 (1)	00:00:03		
12	TABLE ACCESS FULL	PS_GP_CAL_RUN_DTL	48	3168	7 (0)	00:00:01		
13	TABLE ACCESS BY LOCAL INDEX ROWID	PS_GP_PYE_SEG_STAT	18	900	2 (0)	00:00:01		
14	NESTED LOOPS		8376	1856K	1859 (1)	00:00:03		
15	NESTED LOOPS		474	83898	1107 (1)	00:00:02		
16	NESTED LOOPS		479	67539	35 (0)	00:00:01		
17	NESTED LOOPS		6	588	1 (0)	00:00:01		
18	NESTED LOOPS		1	72	4 (0)	00:00:01		
19	NESTED LOOPS		1	48	3 (0)	00:00:01		
20	TABLE ACCESS BY INDEX ROWID	PSOPRDEFN	1 24	2 (0)	00:00:01			
21	INDEX UNIQUE SCAN	PS_PSOPRDEFN	1]	1 (0)	00:00:01			
22	TABLE ACCESS BY INDEX ROWID	PSOPRDEFN	1	24	1 (0)	00:00:01		
23	INDEX UNIQUE SCAN	PS_PSOPRDEFN	1		0 (0]			
24	TABLE ACCESS BY INDEX ROWID	PSOPRDEFN	1	24	1 (0)	00:00:01		
25	INDEX UNIQUE SCAN	PS_PSOPRDEFN	1]	0 O]				
26	TABLE ACCESS BY INDEX ROWID	PS_SJT_OPR_CLS	6	156	7 (0)	00:00:01		
27	INDEX RANGE SCAN	PS_SIT_OPR_CLS	6		1 (0)	00:00:01		
28	PARTITION LIST SINGLE		83	3569	4 (0)	00:00:01	KEY	KEY
29	INDEX RANGE SCAN	PSCSIT_CLASS_ALL	83	3569	4 (0)	00:00:01	1] 1	
30	TABLE ACCESS BY INDEX ROWID	PS_SIT_PERSON	1	36	3 (0)] 00:00:01			
31	INDEX RANGE SCAN	PS_SJIT_PERSON	1		2 (0)	00:00:01		

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 36 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

32	PARTITION RANGE ITERATOR		31		1 (0)	00:00:01	KEY	KEY
33	INDEX RANGE SCAN	PS_GP_PYE_SEG_STAT	31		1 (0)	00:00:01	KEY	KEY
34	PARTITION RANGE ITERATOR		1	72	2 (0)	00:00:01	KEY	KEY
35	TABLE ACCESS BY LOCAL INDEX ROWID	PS_JOB	1 72	2 (0)	00:00:01	KEY	KEY	
36	INDEX RANGE SCAN	PsAjoB	1	1 (0)	00:00:01	KEY	KEY	
37	SORT AGGREGATE		1 20					
38	PARTITION RANGE SINGLE		1	20	2 (0)	00:00:01	KEY	KEY
39	INDEX RANGE SCAN	PSAJoB	1	20	2 (0)	00:00:01	KEY	KEY
40	SORT AGGREGATE		1	23				
41	PARTITION RANGE SINGLE		1 23	2 (0)	00:00:01	KEY	KEY	
42	INDEX RANGE SCAN	PsAjoB	1 23	2 (0)	00:00:01	KEY	KEY	
43	TABLE ACCESS BY INDEX ROWID	PS_LOCATION_TBL	1	30	2 (0)	00:00:01		
44	INDEX RANGE SCAN	PS_LOCATION_TBL	1		1 (0)	00:00:01		
45	SORT AGGREGATE		1	19				
46	INDEX RANGE SCAN	PS_LOCATION_TBL	1] 19	2 (0)	00:00:01			
47	TABLE ACCESS BY INDEX ROWID	PS_DEPT_TBL	1	34	2 (0)	00:00:01		
48	INDEX RANGE SCAN	PS_DEPT_TBL	1	1 (0)	00:00:01			
49	SORT AGGREGATE		1	21				
50	INDEX RANGE SCAN	PS_DEPT_TBL	1] 21	2 (0)	00:00:01			
51	TABLE ACCESS BY INDEX ROWID	PS_XGF_TREE	1	56	31 (4)	00:00:01		
52	INDEX RANGE SCAN	PS_XGF_TREE	1		30 (4)	00:00:01		
53	SORT AGGREGATE		11 28	I				
54	INDEX RANGE SCAN	PS_XGF_TREE	4150	113K	33 (10)	00:00:01		
55	TABLE ACCESS BY INDEX ROWID	PS_PERSONAL_DATA	1	24	1 (0)	00:00:01		
56	INDEX UNIQUE SCAN	PS_PERSONAL_DATA	1]	0 O]				
57	TABLE ACCESS BY INDEX ROWID	PS_SIT_PERSON	5] 165	5 (0)	00:00:01			
58	INDEX RANGE SCAN	PSASIT_PERSON	5	2 (0)	00:00:01			
59	INDEX RANGE SCAN	PSASIT_PERSON	3		2 (0)	00:00:01		
60	SORT AGGREGATE		11 20		I			
61	TABLE ACCESS FULL	PS_GP_CAL_RUN_DTL	14	280	7 (0)	00:00:01		
62	SORT AGGREGATE		1	19				
63	FILTER I			I				
64	TABLE ACCESS FULL	PS_GP_CAL_RUN_DTL	16	304	7 (0)	00:00:01		
65	SORT AGGREGATE		11 20	I				
66	TABLE ACCESS FULL	PS_GP_CAL_RUN_DTL	14	280	7 (0)	00:00:01		
67	NESTED LOOPS		1 69	4 (0)	00:00:01			
68	PARTITION LIST SINGLE		1 43	3 (0)	00:00:01	KEY	KEY	
69	INDEX RANGE SCAN	PSASIT_CLASS_ALL	1] 43	3 (0)] 00:00:01	1] 1]			
70	INDEX RANGE SCAN	PSASIT_OPR_CLS	1 26	1 (0)	00:00:01			
71	NESTED LOOPS		1	60	2 (0)	00:00:01		
72	PARTITION LIST SINGLE		1	34	1 (0)	00:00:01	KEY	KEY
73	INDEX RANGE SCAN	PSASIT_CLASS_ALL	1	34	1 (0)	00:00:01	2	2
74	INDEX RANGE SCAN	PSASIT_OPR_CLS	1] 26	1 (0)	00:00:01			
75	COUNT STOPKEY				I			
76	FILTER	I					I	
77	NESTED LOOPS		1	69	4 (0)	00:00:01		
78	PARTITION LIST SINGLE		1	43	3 (0)] 00:00:01	KEY	KEY	
79	INDEX RANGE SCAN	PSASIT_CLASS_ALL	1	43	3 (0)	00:00:01	1	1
80	INDEX RANGE SCAN	PSASIT_OPR_CLS	1] 26	1 (0)	00:00:01			

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 37

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

What Kind of Single Block Read

| created a temporary working storage table with a classification for each tablespace. Here my
classification is by object type in the tablespace. This is relatively easy if you have a
reasonable tablespace naming convention.

drop table dmk_data_files
/

create table dmk_data_files as

SELECT tablespace_name

, file_id

, CASE

WHEN f.tablespace_name LIKE 'SYS%' THEN 'SYSTEM'
WHEN f.tablespace_name LIKE 'UNDO%' THEN 'UNDO'
WHEN f.tablespace_name LIKE '%IDX%' THEN 'INDEX'
WHEN f.tablespace_name LIKE '%INDEX%' THEN 'INDEX'
ELSE 'TABLE'

END as tablespace_type
FROM dba_data_files f
ORDER BY tablespace_name
/
create unique index dmk_data_files on dmk_data_files(file_id)

/

I recommend that you do not work directly with DBA_DATA_FILES, because the resulting
query will be slow. Instead, build a working storage table.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 38 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

When ASH reports a wait on file 1/0 it also logs the object, file and block numbers.
Although, beware, because the values may not have been cleared out FROM the previous

sample.

So you know which database, and hence which tablespaces was accessed.

It’s a simple matter work out how much time was spent writing to which type of tablespace

FROM

WHERE
AND
AND

and
AND
AND
AND
AND
and
AND
AND

/

SELECT /*+LEADING(X h) USE_NL(h f)*/

GROUP BY f.tablespace_type
ORDER BY ash_secs DESC

f.tablespace_type
SUM(10) ash_secs
dba_hist_snapshot x
dba_hist_active_sess_history h
dmk_data_files f
x.end_interval_time <= TO_DATE('201002161300"', 'yyyymmddhh24mi")
x.begin_interval_time >= TO_DATE('201002161100"', "'yyyymmddhh24mi')
h.sample_time BETWEEN TO_DATE('201001261100', 'yyyymmddhh24mi")
AND TO_DATE('201001261300", "yyyymmddhh24mi ')
.snap_id = x.snap_id
.dbid = x.dbid
.instance_number = x.instance_number
.event LIKE 'db file%'
.pltext = 'file#'
.p2text = "block#'
.event IS NOT NULL
f.file_id = h.pl

e =

Here, we can see we are spending more time on index reads that table reads, and very little on
the undo tablespace, so there is not too much work to maintain read consistency occurring.

TABLES

INDEX
TABLE
UNDO
SYSTEM

ASH_SECS

Of course, you could classify your tablespaces differently. You might have different
applications all in one database. You might want to know how much of the load comes
FROM which application.

I suppose you could look go down to each individual object being accessed, but that will be
more involved, and I haven’t tried that.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 39

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Blocking Lock Analysis

03 NOVEMBER 2014

This graph is derived from AWR data2l, and it shows a period of time when a system
exhibited a lot of time lost to row level wait. We lost 13 hours of user time in the two-hour
period from 11am to 1pm.

10000

9000

8000

7000

6000

5000

Time Waited (s)

4000

3000

2000

1000

0

Tue 26.

Time Waited

AWR Wait Event History

Event Name

Wait Class

—— eng: TX - row lock contention - Application

1.10 00:00

Tue 26.1.10 06:00

Tue 26.1.10 12:00
Snapshot End Time

Snapshot Start Time

Tue 26.1.10 18:00

Lets take a look at the historical ASH data in the AWR snapshots, and see where we lost time

to row level locking in that period across the whole database.

FROM

WHERE

AND

/

h.sql_id
h.sql_plan_hash_value
SUM(10) ash_secs

dba_hist_snapshot x

SELECT /*+LEADING(x h) USE_NL(h)*/

dba_hist_active_sess_history h

x.end_interval_time

X

=

<= TO_DATE('201001261300

.begin_interval_time >= TO_DATE('201001261100

AND TO_DATE('201001261300", 'yyyymmddhh24mi ')

h.snap_id = x.snap_id
h.dbid = x.dbid
h

.instance_number = x.instance_number

h.event = 'enq: TX - row lock contention'

ORDER BY ash_secs DESC

GROUP BY h.sql_id, h.sql_plan_hash_value

', 'yyyymmddhh24mi ')
', 'yyyymmddhh24mi ')

.sample_time BETWEEN TO_DATE('201001261100",'yyyymmddhh24mi')

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 40

21 This blog extra explains how to produce such a graph: http://blog.go-
faster.co.uk/2008/12/graphing-awr-data-in-excel.html

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

http://blog.go-faster.co.uk/2008/12/graphing-awr-data-in-excel.html
http://blog.go-faster.co.uk/2008/12/graphing-awr-data-in-excel.html

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

And rather reassuringly the ASH total agrees quite well with AWR. The top statement alone
is costing us nearly 5 hours.

SQL Plan
SQL_ID Hash value ASH_SECS
7qxdrwcndyzhh 3723363341 26030
652mx4tffq4l5 1888029394 11230
c9jjtvk0qf649 3605988889 6090
artqgxug4z0fl 8450529 240
gtj7zuzy2b4g6 2565837323 100

Let’s look at the statements involved. They all come FROM the PeopleSoft Publish and
Subcribe Servers.

The first statement shows a homemade sequence. PeopleSoft is a platform agnostic
development, so it doesn’t use Oracle sequence objects. The other two statements show an
update to a queue management table.

SQL_ID 7gxdrwcndyzhh

UPDATE PSIBQUEUEINST SET QUEUESEQID=QUEUESEQID+:1 WHERE QUEUENAME=:2

SQL_ID 652mx4tffq4ls

UPDATE PSAPMSGPUBSYNC SET LASTUPDDTTM=SYSDATE WHERE QUEUENAME=:1

SQL_ID c9jjtvk0gf649

UPDATE PSAPMSGSUBCSYNC SET LASTUPDDTTM=SYSDATE WHERE QUEUENAME=:1

There is nothing | can do about any of these because the code is deep inside PeopleTools and
cannot be changed. This is the way that the Integration Broker works.

I cannot find the statement that is blocking these statements. Oracle doesn’t hold that
information. It is probably another instance of the same statement, but that it isn’t the
question. The real question is ‘what is the session that is holding the lock doing while it is
holding the lock, and can I do something about that?”

The ASH data has three columns that help me to identify the blocking session.

e BLOCKING_SESSION_STATUS — this column has the value VALID if the
blocking session is within the same instance, but GLOBAL if is in another instance.

e BLOCKING_SESSION - this is the session 1D of the blocking session if the session
is within the same instance, otherwise it is null.

o BLOCKING_SESSION_SERIAL# - this is the serial number of the blocking session
if the session is within the same instance, otherwise it is null.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 41

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 42

For cross-instance locking | cannot use ASH in 10g to find the exact session that is holding
the lock. All I know is that | am locked by a session connected to another instance. The 11g
ASH data does contain this information. So this technique only works for locking within a
single instance on 10g.

The queries that I need to write don’t perform well on the ASH views, so [am going to extract
them to a temporary working storage table.

03 NOVEMBER 2014

DROP TABLE my_ash
/

CREATE TABLE my_ash AS
SELECT /*+LEADING(X) USE_NL(h)*/ h.*

FROM dba_hist_snapshot x

, dba_hist_active_sess_history h

WHERE x.end_interval_time >= TO_DATE('201001261100"', 'yyyymmddhh24mi")

AND x.begin_interval_time <= TO_DATE('201001261300"', 'yyyymmddhh24mi")

AND h.sample_time BETWEEN TO_DATE('201001261100"', 'yyyymmddhh24mi")
AND TO_DATE('201001261300', 'yyyymmddhh24mi ')

AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

/

CREATE INDEX my_ash ON my_ash (dbid, instance_number, snap_id, sample_id,
sample_time) COMPRESS 3

/

CREATE INDEX my_ash2 ON my_ash (event, dbid, instance_number, snap_id)
COMPRESS 3

/

I now want to look for statements running in the sessions that are blocking the sessions that
are waiting on TX enqueue.

SELECT /*+LEADING(X w) USE_NLCh w)*/
h.sql_id

, h.sqgl_plan_hash_value

, SuM(10) ash_secs

FROM my_ash w

left outer join my_ash h

on h.snap_id = w.snap_id

AND h.dbid = w.dbid

AND h.instance_number = w.instance_number

AND h.sample_id = w.sample_id

AND h.sample_time = w.sample_time

AND h.session_id = w.blocking_session

AND h.session_serial# = w.blocking_session_serial#
WHERE w.event = 'enq: TX - row lock contention'

GROUP BY h.sql_id, h.sql_plan_hash_value
ORDER BY ash_secs DESC

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

This is the top of list of statements.

Note that two of the statements that appear in this list were the original SQL_IDs that we
started with. I’ll come back to this below.

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

SQL_ID SQL_PLAN_HASH_VALUE ASH_SECS

29210
5st32und4a2y92 2494504609 10670
652mx4tffq4l5 1888029394 7030
artqgxug4z0fl 8450529 580
7qxdrwcndyzhh 3723363341 270

The first line in the report is blank because there is no ASH data for the session holding the
lock because it is not active on the database. This indicates that the client process is busy, or
waiting on something else outside the database. This is where the majority of the time is
spent, and there is nothing that can be done within the database to address this. It is a matter
of looking at the client process.

However the line in the report says that a statement blocks other sessions for 10670 seconds.
We can look at that.

SELECT * FROM table (dbms_xplan.display awr ('5st32un4a2y92',2494504609,NULL, 'ADVANCED')) ;

Note also that this is the execution plan when the query was first seen. The cost is the cost
then, not now. The value of the bind variable was the value then not now!

SQL_ID 5st32un4a2y92

SELECT 'X' FROM PS_CDM_LIST WHERE CONTENTID = :1

Plan hash value: 2494504609

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | | | 22 (100) | |
| 1 | INDEX FAST FULL SCAN| PS_CDM_LIST | 1] 5 | 22 (10)| 00:00:01 |

Query Block Name / Object Alias (identified by operation id):

1 - SEL$1 / PS_CDM_LIST@SEL$1

Peeked Binds (identified by position):

1 - :1 (NUMBER): 17776

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 43

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

If I run a fresh execution plan on this statement, the cost is now 3178. This reflects how the

table has grown over time.

explain plan for SELECT 'X' FROM PS_CDM_LIST WHERE CONTENTID = :1

/

Explained.

Plan hash value: 2494504609

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1| 6 | 3178 (9)| 00:00:05 |
|* 1 | INDEX FAST FULL SCAN| PS_CDM_LIST | 1| 6 | 3178 (9)| 00:00:05 |

predicate Information (identified by operation id):

1 - filter("CONTENTID"=TO_NUMBER(:1))

Resolving the Lock Chain to the Ultimate Blocking Session

The second longest running blocking statement is one of the statements that we found in the
first place, so this shows that we have a chain of locks, and we need to resolve that back to the
blocking statement that is not itself blocked.

SELECT * FROM table(dbms_xplan.display_awr('652mx4tffq415',1888029394,NULL, 'ADVANCED'));

SQL_ID 652mx4tffq4l5

UPDATE PSAPMSGPUBSYNC SET LASTUPDDTTM=SYSDATE WHERE QUEUENAME=:1

If one session is held by a second session which is itself blocked by a third session, | am more
interested in what the third session is doing. The following SQL updates the blocking session
data recorded in the first session that indicates the session to point to the third session. T don’t
need to find the ASH data for the third session. It might not exist because the third session
might not be active on the database (because the user or client process is busy with non-
database activity) while it continues to hold the lock.

If | run the SQL repeatedly until no more rows are updated, | will be able to associate the time
spent waiting on a lock with the session that is ultimately responsible for the lock.

MERGE INTO my_ash u

INNER JOIN my_ash b

USING (
SELECT /*+LEADING(A) USE_NL(B C)*/ a.snap_id, a.dbid, a.instance_number
a.sample_id, a.sample_time
a.session_id, a.session_serial#
, b.blocking_session, b.blocking_session_serial#, b.blocking_session_status
FROM my_ash a

ON b.snap_id = a.snap_id

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 44

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

AND b.dbid = a.dbid

AND b.instance_number = a.instance_number

AND b.sample_id = a.sample_id

AND b.sample_time = a.sample_time

AND b.session_id = a.blocking_session

AND b.session_serial# = a.blocking_session_serial#
AND b.event = 'enq: TX - row lock contention'

AND b.session_id != a.session_id

AND b.session_serial# != a.session_serial#

AND b.blocking_session != a.session_id

AND b.blocking_session_serial# != a.session_serial#
WHERE a.event = 'enq: TX - row lock contention'

) s

ON (u.snap_id = s.snap_id

AND u.dbid = s.dbid

AND u.instance_number = s.instance_number

AND u.sample_id = s.sample_id

AND u.sample_time = s.sample_time

AND u.session_id = s.session_id

AND u.session_serial# = s.session_serial#)

WHEN MATCHED THEN UPDATE

SET u.blocking_session = s.blocking_session

s u.blocking_session_serial# = s.blocking_session_serial#
s u.blocking_session_status = s.blocking_session_status
/

So this moves the emphasis further onto the query of PS_CDM_LIST.

SQL Plan
Hash value
5st32un4a2y92 2494504609
652mx4tffq4l5 1888029394
7qxdrwcndyzhh 3723363341

ASH_SECS
12840 (was
5030 (was
320 (was

10670)
7030)
270)

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 45

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Which Tables Account for My 1/0?

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 46

ASH holds object number data. But | want to work in terms of tables. So, | am going to
produce my own version of DBA_OBJECTS. | want to be able to easily group all the objects
in a table, its indexes, their partitions and sub-partitions

03 NOVEMBER 2014

CREATE TABLE DMK_OBJECTS
(OBJECT_ID NUMBER NOT NULL,
OWNER VARCHAR2(30) NOT NULL,
OBJECT_NAME VARCHAR2(128) NOT NULL,
SUBOBJECT_NAME VARCHAR2(30),
PRIMARY KEY (OBJECT_ID)

insert into dmk_objects

SELECT object_id, owner, object_name, subobject_name

FROM dba_objects

where object_type like 'TABLE%'

union all

SELECT o.object_id, i.table_owner, i.table_name, o.subobject_name
FROM dba_objects o, dba_indexes i

where o.object_type like 'INDEX%'

and i.owner = o.owner

and i.index_name = o.object_name

/

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

So, for a single process identified by process instance number, | want to take the ash entries
for that process that relate to the db file wait events, and | want to see which tables they relate
to.

SELECT /*+LEADING(r x h) USE_NL(Ch)*/
r.prcsinstance
, o.owner, o.object_name
, (CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400
exec_secs
5 SUM(10) ash_secs
FROM dba_hist_snapshot x
; dba_hist_active_sess_history h
, sysadm.psprcsrqgst r
. dmk_objects o

WHERE x.end_interval_time >= r.begindttm

AND x.begin_interval_time <= r.enddttm

AND h.sample_time BETWEEN r.begindttm AND r.enddttm
AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.module = r.prcsname

AND h.action LIKE 'PI='||r.prcsinstance||'%"

AND h.event LIKE 'db file%'

AND r.prcsinstance = 2256605

AND h.current_obj# = o.object_id

GROUP BY r.prcsinstance, r.prcsname, r.begindttm, r.enddttm

, o.owner, o.object_name
having sum(10) >= 60

This process spends a lot of time reading GP_RSLT_ACUM.

Process Exec ASH
Instance OWNER OBJECT_NAME secs Secs
2256605 SYSADM PS_GP_RSLT_ACUM 5469 590
2256605 SYSADM PS_GP_RSLT_PIN 5469 310
2256605 SYSADM PS_GP_PYE_PRC_STAT 5469 170
2256605 SYSADM PS_JOB 5469 30
sum 1100

We can then get the execution plans for the individual statements

SELECT 'SELECT * FROM table(dbms_xplan.display_awr('"''||sql_id||""'"',"||sql_plan_hash_value||',NULL,'"'ADVANCED''));"
FROM (
SELECT /*+LEADING(r x h) USE_NL(bh)*/
r.prcsinstance
, o.owner, o.object_name
h.sql_id, h.sql_plan_hash_value
(CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400 exec_secs
SuUM(10) ash_secs

FROM dba_hist_snapshot x

g dba_hist_active_sess_history h

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 47

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

) sysadm.psprcsrgst r

f my_ash_objects o

WHERE x.end_interval_time >= r.begindttm

AND X.begin_interval_time <= r.enddttm
AND h.sample_time BETWEEN r.begindttm AND r.enddttm

AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.module = r.prcsname

AND o.object_name = 'PS_GP_RSLT_ACUM'

AND h.action LIKE 'PI='||r.prcsinstance]||'%"

AND h.event LIKE 'db file%'

AND r.prcsinstance = 2256605

AND h.current_obj# = o.object_id

GROUP BY r.prcsinstance, r.prcsname, r.begindttm, r.enddttm
, o.owner, o.object_name
s h.sql_id, h.sql_plan_hash_value
- having sum(10) >= 60
ORDER BY ash_secs DESC
) x
ORDER BY ash_secs DESC

/

SELECT * FROM table(dbms_xplan.display_awr('5n5tu62039ak2"',843197476,NULL, 'ADVANCED'));
SELECT * FROM table(dbms_xplan.display_awr('ggwkkzmwlwmfs',h3417552465,NULL, 'ADVANCED'));

SELECT * FROM table(dbms_xplan.display_awr('glyupgb6lzndq',3420404643,NULL, 'ADVANCED'));

This is the beginning of the top statement

INSERT INTO .. SELECT ..

FROM PS_XGF_ABS14_TMP4 A, PS_GP_RSLT_ACUM B, ps_GP_PIN C, ps_gp_pye_prc_stat P,ps_gpgb_ee_rslt G, PS_GP_CALENDAR L
WHERE B.PIN_NUM = C.PIN_NUM AND A.PROCESS_INSTANCE =2256605 AND P.EMPLID = A.EMPLID AND

P.EMPL_RCD = A.EMPL_RCD AND B.ACM_FROM_DT = A.PERIOD_BEGIN_DT AND B.USER_KEY1l > ' '

AND B.USER_KEY1l =to_char(G.HIRE_DT, 'YYYY-MM-DD')

AND C.PIN_NM IN ('AE PHO_TAKE', 'AE PHO B_TAKE')

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 48 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Across an entire system, for the last week which tables are the cause of the most 1/0?

SELECT /*+LEADING(x h) USE_NLCh)*/
o.owner, o.object_name

, SUM(10) ash_secs

FROM dba_hist_snapshot x

, dba_hist_active_sess_history h

, dmk_objects o

WHERE x.end_interval_time >= SYSDATE-7

AND x.begin_interval_time <= SYSDATE

AND h.sample_time >= SYSDATE-7

AND h.sample_time <= SYSDATE

AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.event LIKE 'db file%'

AND h.current_obj# = o.object_id

group by o.owner, o.object_name

having Sum(10) >= 3600

order by ash_secs desc

This is just to put things into context. | am going to look at GP_RSLT_ACUM, because |
know it is the output of the payroll calc process, and it may be a case for doing a selective

extract into a reporting table.

ASH
OWNER OBJECT_NAME Secs
SYSADM PS_TL_RPTD_TIME 800510
SYSADM PS_TL_PAYABLE_TIME 327280
SYSADM PS_GP_RSLT_ACUM 287870
SYSADM PS_SCH_DEFN_DTL 161690
SYSADM PS_SCH_DEFN_TBL 128070
SYSADM PS_GP_RSLT_PIN 124560
SYSADM PS_GP_PYE_PRC_STAT 92410
SYSADM PS_SCH_ADHOC_DTL 88810

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 49

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Which processes hit this table?

03 NOVEMBER 2014

-- AND

SELECT /*+LEADING(X) USE_NL(h)*/

o.owner, o.object_name

h.module

h.sql_id, h.sgl_plan_hash_value

SUM(10) ash_secs

dba_hist_snapshot x
dba_hist_active_sess_history h

dmk_objects o
.end_interval_time

>= SYSDATE-7

.begin_interval_time <= SYSDATE

.sample_time
.sample_time

>= SYSDATE-7

<= SYSDATE

.snap_id = x.snap_id

.instance_number
'db file%'

.event LIKE

.current_obj# = o.object_id
.object_name = 'PS_GP_RSLT_ACUM'

.module !=

X
X

h

h

h

h.dbid = x.dbid
h

h

h

o

h

'GPPDPRUN'

h.module = 'DBMS_SCHEDULER'

GROUP BY o.owner, o.object_name

, h.module
-- , h.sql_id, h.sql_plan_hash_value

having sum(10) >= 900

ORDER BY ash_secs DESC

X.instance_number

So these processes spend this long reading the accumulator table and its index

SYSADM
SYSADM
SYSADM
SYSADM
SYSADM
SYSADM
SYSADM
SYSADM
SYSADM
SYSADM
SYSADM

OBJECT_NAME

PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM
PS_GP_RSLT_ACUM

MODULE

XGF_HOL_MGMT
DBMS_SCHEDULER
SQL*PTlus
GPGBHLE
GPPDPRUN
XGF_AE_ABO007
SQL Developer
GPGBEPTD
XGF_CAPITA
GPGB_PSLIP_X
GPGB_EDI

79680
37810
37060
30710
27440
21440
11210
7240
5850
5030
4880

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 50

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Who is using this index?

Or, to put it another way, | want to change or drop this index, who and what will I impact?

The challenge is is certainly not exclusive to PeopleSoft, but in PeopleSoft, the Application
Designer tool makes it very easy for developers to add indexes to tables. Sometimes, too
easy! | often find tables with far more indexes than are good for them.

There are several concerns:

o Indexes are maintained during data modification. The more indexes you have, the
greater the overhead.

e If you have too many indexes, Oracle might choose to use the wrong one, resulting in
poorer performance.

e There is of course also a space overhead for each index, but this is often of less
concern.

If you can get rid of an index, Oracle doesn't store, maintain or use it.

In some cases, | have wanted to remove unnecessary indexes, and in others to adjust indexes.
However, this immediately raises the question of where are these indexes used, and who will
be impacted by the change. Naturally, I turn to the Active Session History (ASH) to help me
find the answers.

As we have already discussed ASH reports the object number, file number, block number and
(from 11g) row number being accessed by physical file operations. These values are not
reliable for other events because they are merely left over from the previous file event that set
them. So, we can profile the amount of time spent on physical 1/0 on different indexes, but
not other forms of DB Time, such as CPU time, spent accessing the blocks in the buffer cache.

However, if you want to find where an index is used, then this query will also identify
SQL_IDs where the index is either used in the query or maintained by DML. If | am
interested in looking for places where changing or deleting an index could have an impact
then | am only interested in SQL query activity. ASH samples which relate to index
maintenance are a false positive. Yet, | cannot simply eliminate ASH samples where the
SQL_OPNAME is not SELECT because the index may be used in a query within the DML
statement.

Another problem with this method is that it matches SQL to ASH by object ID. If someone
has rebuilt an index, then its object number changes. A different approach is required.

Index Use from SQL Plans Captured by AWR

During an AWR snapshot the top-n SQL statements by each SQL criteria in the AWR report
(Elapsed Time, CPU Time, Parse Calls, Shareable Memory, Version Count) , see
dbms_workload_repository. The SQL plans are exposed by the view
DBA_HIST_SQL_PLAN.

On PeopleSoft systems, | generally recommend decreasing the snapshot interval from the
default of 60 minutes to 15. The main reason is that SQL gets aged out of the library cache
very quickly in PeopleSoft systems. They generate lots of dynamic code, often with literal
values rather than bind variables. Cursor sharing is not recommended for PeopleSoft, so
different bind variables result in different SQL_IDs. The dynamic code also results in
different SQL IDs even with cursor sharing (see http://blog.psftdba.com/2014/08/to-hint-or-
not-to-hint-application.html). Therefore, increasing the snapshot frequency means that will
capture more SQL statements and plans. This will increase total volume of the AWR

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 51

http://docs.oracle.com/database/121/ARPLS/d_workload_repos.htm#ARPLS093
http://docs.oracle.com/database/121/REFRN/refrn23443.htm#REFRN23443
http://blog.psftdba.com/2014/08/to-hint-or-not-to-hint-application.html
http://blog.psftdba.com/2014/08/to-hint-or-not-to-hint-application.html

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

repository simply because there are more snapshots. However, the overall volume of ASH
data captured does not change, it just gets copied to the repository earlier.

On DBA _HIST_SQL_PLAN the object ID, owner, type and name are recorded, so | can find
the plans which referenced a particular object. | am going to take an example from a
PeopleSoft Financials system, and look at indexes on the PS_PROJ_RESOURCE table. These
are some of the indexes on PS_PROJ RESOURCE. We have 4 indexes that all lead on
PROCESS_INSTANCE. 1 suspect that not all are essential, but | need to work out what is

using them.

INDEX NAME

PSJPROJ_RESOURCE

PSLPROJ_RESOURCE

PSMPROJ_ RESOURCE

PSNPROJ_RESOURCE

COLUMN NAME

PROCESS_INSTANCE
BUSINESS_UNIT GL
BUSINESS UNIT
PROJECT_ID
ACTIVITY ID
CUST_ID

PROCESS_INSTANCE
EMPLID

EMPL,_RCD
TRANS_DT

PROCESS_INSTANCE
BUSINESS UNIT
PROJECT ID
ACTIVITY ID
RESOURCE_ID

PROCESS_INSTANCE
BUSINESS UNIT
TIME RPTG_CD

COLUMN EXPRESSION

| find it easier to extract the ASH data to my own working storage table. For each index on
PS_PROJ_RESOURCE, | am going to extract a distinct list of plan hash values. | will then
extract all ASH data for those plans.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 52

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

Note, that | have not joined the SQL_ID on DBA_HIST_SQL_PLAN. That is because
different SQL_IDs can produce the same execution plan. The plan is equally valid for all
SQL_IDs that produce the plan, not just the one where the SQL_ID also matches. Although,
of course, costs may vary.

DROP TABLE my_ash purge

/

CREATE TABLE my_ash COMPRESS AS
WITH p AS (

SELECT DISTINCT p.plan_hash_value, p.object#, p.object_owner, p.object_type, p.object_name

FROM dba_hist_sql_plan p

WHERE p.object_name 1like 'PS_PROJ_RESOURCE'

AND p.object_type LIKE 'INDEX%'

AND p.object_owner = 'SYSADM'

D)
SELECT p.object# object_id, p.object_owner, p.object_type, p.object_name
B h.*

FROM dba_hist_active_sess_history h
, p
WHERE h.sql_plan_hash_value = p.plan_hash_value

/

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

I am fortunate that PeopleSoft is a well instrumented application. Module and Action are set
to fairly sensible values that will tell me whereabouts in the application the ASH sample
relates.

In the following query | have omitted any ASH data generated by SQL*Plus, Toad, or SQL
Developer, and also any generated by Oracle processes to prevent statistics collection being
included.

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Set pages 999 lines 150 trimspool on

break on object name skip 1

compute sum of ash secs on object name

column ash secs heading 'ASH|Secs' format 9999999
column module format a20

column action format a32

column object name format al8

column max sample time format al9 heading 'Last|Sample'
column sqgl plans heading 'SQL|Plans' format 9999
column sgl execs heading 'SQL|Execs' format 99999

WITH h AS (
SELECT object name
’ CASE WHEN h.module IS NULL THEN

REGEXP SUBSTR (h.program, ' [~.@]+',1,1)
WHEN h.module LIKE 'PSAE.%' THEN
REGEXP SUBSTR (h.module, '[*.]+',1,2)
ELSE REGEXP SUBSTR (h.program, '[~.@]+',1,1)
END as module
P CASE WHEN h.action LIKE 'PI=%' THEN NULL
ELSE h.action
END as action

’ CAST (sample_time AS DATE) sample time
’ sql_id, sgl_plan hash value, sql exec_id
FROM my ash h

)

SELECT object name, module, action

7 sum(10) ash secs

, COUNT (DISTINCT sgl plan hash value) sql plans

’ COUNT (DISTINCT sqgl id||sql plan hash value||sql exec id) sql execs
MAX (sample time) max sample time

r

FROM h

WHERE NOT lower (module) IN('oracle', 'toad', 'sglplus', 'sglplusw')
AND NOT lower (module) LIKE 'sqgl%'

GROUP BY object name, module, action

ORDER BY SUBSTR (object name, 4), object name, ash Secs desc
/

Spool off

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 53

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

I now have a profile of how much each index is used. In this particular case, | found
something using every index. It is possible that you will not find anything that uses some

indexes.
ASH sQL sqQL Last

OBJECT_NAME MODULE ACTION secs Plans Execs Sample

PSJPROJ_RESOURCE ~ PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step24.s 7300 1 66 06:32:57 27/08/2014
PC_PRICING GF_PBINT_AE.CallmeA.Step24.S 40 1 2 08:38:57 22/08/2014

sum 7340

PSLPROJ_RESOURCE ~ PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step28.s 1220 1 53 06:33:17 27/08/2014

B L

sum 1220

PSMPROJ_RESOURCE ~ PC_TL_TO_PC GF_PBINT_AE.XXB1EDM.Step07.S 60 2 6 18:35:18 20/08/2014

sum 60

PSNPROJ_RESOURCE ~ PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step26.S 6720 1 49 18:53:58 26/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step30.S 3460 1 60 06:33:27 27/08/2014
GF_OA_CMSN GF_OA_CMSN.01INIT.Step0l.S 2660 1 47 19:19:40 26/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step06.S 1800 1 52 18:53:28 26/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeG.Step01.S 1740 1 61 06:34:17 27/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step02.S 1680 1 24 18:53:18 26/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Stepl0.S 1460 1 33 17:26:26 22/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step08.S 920 1 26 17:26:16 22/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step36.S 460 1 18 18:26:38 20/08/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Step09.S 420 1 16 06:33:07 27/08/2014
PC_PRICING GF_PBINT_AE.CallmeG.Step0l.S 200 1 10 08:09:55 22/08/2014
PC_AP_TO_PC GF_PBINT_AE.CallmeH.Step00A.S 170 1 17 21:53:26 21/08/2014
PC_PRICING GF_PBINT_AE.CallmeA.Step36.S 20 1 1 08:02:46 05/08/2014
PC_PRICING GF_PBINT_AE.CallmeA.Step30.S 20 1 1 13:42:48 04/08/2014
PC_PRICING GF_PBINT_AE.CallmeA.Step06.S 20 1 1 15:58:35 28/07/2014
PC_TL_TO_PC GF_PBINT_AE.CallmeA.Pseudo.S 20 1 1 19:45:11 06/08/2014

SRR R R

sum 21770

The next stage is to look at individual SQL statements

This query looks for which SQL statement is using a particular index on PROJ_RESOURCE.
If I can't find the SQL which cost the most time, then just choose another SQL with the same
plan

e | have found that sometimes a plan is captured by AWR, but the SQL statement is
not. Personally, | think that is a bug. Working around it has made the following
query quite complicated.

Break on object_name skip 1
column ash_secs heading 'ASH|Secs' format 9999999
Set Tong 50000

column cmd Format a200

Spool dmk

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 54 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

WITH h AS (

SELECT h.object_name

ELSE REGEXP_SUBSTR(h.program,'[A.@]+',1,1)
END as module
5 CASE WHEN h.action LIKE 'PI=%' THEN NULL
ELSE h.action
END as action
, h.sql_id, h.sql_plan_hash_value
, t.command_type --not null 7if plan and statement captured
FROM my_ash h
LEFT OUTER JOIN (
SELECT tl.*
FROM dba_hist_sqltext tl
9 dba_hist_sql_plan pl
WHERE tl.sql_id = pl.sql_id
AND pl.id = 1
)t
ON t.sql_id = h.sql_id
AND t.dbid = h.dbid

WHERE h.object_name IN('PSMPROJ_RESOURCE')

AND h.object_Type = 'INDEX'

AND h.object_owner = 'SYSADM'

And NOT Tower(module) IN('oracle','toad','sqlplus', 'sqlplusw')
AND NOT Tower(module) LIKE 'sql%'

), X AS (--aggregate DB time by object and statement
SELECT object_name, sql_id, sql_plan_hash_value

, sum(10) ash_secs

FROM h

WHERE NOT Tower(module) IN('oracle','toad','sqlplus', 'sqlplusw')
AND NOT Tower(module) LIKE 'sql%'

GROUP BY object_name, sql_id, sql_plan_hash_value

), ¥y AS (--rank DB time per object and plan

SELECT object_name, sql_id, sql_plan_hash_value

, ash_secs

FROM X
), z AS (
SELECT object_name
, CASE WHEN t.sql_text IS NOT NULL THEN y.sql_id
ELSE (SELECT tl.sql_id
FROM dba_hist_sqltext tl
9 dba_hist_sql_plan pl
WHERE tl.sql_id = pl.sql_id
AND pl.plan_hash_value = y.sql_plan_hash_value
AND rownum = 1) --7f st7]] cannot find statement just pick any one
END AS sql_id
, ¥-sql_plan_hash_value, y.plan_ash_secs
, CASE WHEN t.sql_text IS NOT NULL THEN t.sql_text

ELSE (SELECT tl.sql_Text

FROM dba_hist_sqltext tl

9 CASE WHEN h.module IS NULL THEN REGEXP_SUBSTR(h.program,'[A.@]+',1,1)

WHEN h.module LIKE 'PSAE.%' THEN REGEXP_SUBSTR(h.module,'[A.]+',1,2)

s 10*COUNT (command_type) sql_secs --DB time for captured statements only

, SuM(ash_secs) over (partition by object_name, sql_plan_hash_value) plan_ash_secs

row_number() over (partition by object_name, sql_plan_hash_value ORDER BY sql_Secs DESC) ranking

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 55

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

, dba_hist_sql_plan pl
WHERE tl.sql_id = pl.sql_id
AND pl.plan_hash_value = y.sql_plan_hash_value
AND rownum = 1) --7f st7]] cannot find statement just pick any one
END AS sql_text
from y
left outer join dba_hist_sqltext t
on t.sql_id = y.sql_id
WHERE ranking = 1 --captured statement with most time
)
SELECT *
--"SELECT * FROM
table(dbms_xplan.display_awr('"'"'||sql_id||'"","||sql_plan_hash_value||"',NULL,'"'ADVANCED''))/*"'||object_name||':"'||plan_ash_Secs||'*/;"' cmd
FROM z

ORDER BY object_name, plan_ash_secs DESC

/
Spool off
So now | can see the individual SQL statements.
PSJPROJ_RESOURCE f02k23bqjOxc4 3393167302 7340 UPDATE PS_PROJ_RESOURCE C SET (C.Operating_Unit, C.CHARTFIELD1, C.PRODUCT, C.CLA
SS_FLD, C.CHARTFIELD2, C.VENDOR_ID, C.contract_num, C.contract_line_num, ..
PSLPROJ_RESOURCE 2fz0gch2774y0 821236869 1220 UPDATE ps_proj_resource p SET p.deptid = NVL ((SELECT j.deptid FROM ps_job j wH
ERE j.emplid = p.emplid AND j.empl_rcd = p.empl_rcd AND j.effdt = (SELECT MAX (..
PSMPROJ_RESOURCE ~ 96cdkb7jyq863 338292674 50 UPDATE PS_GF_BI_EDM_TAO04 a SET a.GF_ni_amount = (SELECT x.resource_amount FROM
PS_PROJ_RESOURCE x WHERE X.process_instance = ..
1kq9rfy8sb8d4 4135884683 10 UPDATE PS_GF_BI_EDM_TAO4 a SET a.GF_ni_amount = (SELECT X.resource_amount FROM
PS_PROJ_RESOURCE x WHERE X.process_instance = ..
PSNPROJ_RESOURCE ga2x2u4jw9p0x 2282068749 6760 UPDATE PS_PROJ_RESOURCE P SET (P.RESOURCE_TYPE, P.RESOURCE_SUB_CAT) = ..
925qsq6wrr7zp 3665912247 3500 UPDATE PS_PROJ_RESOURCE P SET P.TIME_SHEET_ID = ..

Ultimately, | have needed to look through the SQL plans that do use an index to decide
whether | need to keep that index, or to decide whether the statement would perform
adequately using another index. In this case, on this particular system, I think the index
PSMPROJ_RESOURCE would be adequate for this statement, and | would consider dropping
PSLPROJ_RESOURCE.

The decision also requires some background knowledge about the system. | carried on with

examination of SQL and execution plan to determine whether each index is really needed or
another index (or even no index at all) would do as well.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 56 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Getting Rid of Indexes

So, | am going to jump forward to the point where | have decided that | want drop the J, L and
N indexes on PROJ_RESOURCE and just keep M. Obviously this needs to be tested
carefully in all the places that reference the index.

o Ifall the testing is successful and you decide to go ahead and drop the index in
production, you might prefer to make it invisible first for a while. Itis likely that the
indexes you choose to examine are large and will take time to rebuild. An invisible
index will not be used by the Optimizer, but it will continue to be maintained during
DML. If there are any unfortunate consequences, you can immediately make the
index visible without having to rebuild it.

Limitations of Method

e AWR does not capture all SQLs, nor all SQL plans. First the SQL has to be in the
library cache and then it must be one of the top-n. A SQL that is efficient because it
uses an appropriate index may not be captured, and will not be detected by this
approach.

e ASH data is purged after a period of time, by default 31 days. If an index is only
used by a process that has not run within the retention period, then it will not be
detected by this approach22. This is another reason to retain ASH and AWR in a
repository for a longer period. | have heard 400 days suggested, so that you have
ASH for a year and a month.

o However, this also causes the SYSAUX tablespace to be become very large,
so | would suggest regularly moving the data to a separate database. | know
one customer who has built a central AWR repository for all their
production and test databases and automated transfer of data. This
repository has been of immense diagnostic value.

22 However, if you only need an index during an annual process, perhaps it would be better to
build it for that process and drop it again afterwards, rather than have it in place for the whole
year?

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 57

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Did my Execution Plan Change?

We were experiencing a problem with a query in a particular report. We fixed it by adding a
hint. | wanted to prove that when the hint was put into production, the execution plan
changed. This query is very similar to the one described in Batch Processes (see page 15), but
here | want to list all the queries run by all instances of a named report, and see if the exection
plan changed.

SELECT /*+LEADING(r f d x h) USE_NL(Ch)*/
r.prcsinstance

, r.begindttm

s h.sql_id

--, h.sql_child_number
h.sql_plan_hash_value
(CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400 exec_secs
SUM(10)g ash_secs

FROM dba_hist_snapshot x
dba_hist_active_sess_history h
sysadm.psprcsrqgst r

sysadm.ps_cdm_file_list f

sysadm.psxprptdefn d

WHERE x.end_interval_time >= r.begindttm

AND Xx.begin_interval_time <=r.enddttm

AND h.sample_time BETWEEN r.begindttm AND r.enddttm
AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = x.instance_number

AND h.module = r.prcsname

AND h.action LIKE 'PI='||r.prcsinstance||'%"

AND r.prcsinstance = f.prcsinstance

AND NOT f.cdm_file_type IN('AET','TRC','LOG')

AND d.report_defn_id = SUBSTR(F.filename,1,instr(f.filename,"'."')-1)
AND d.report_defn_id = 'XGF_WK_LATE'

AND r.prcsname = 'PSXPQRYRPT'

AND r.begindttm >= TRUNC(SYSDATE)

ORDER BY begindttm

And we can see that after the fix was applied and the users were told they could start to run
this report again, the execution plan changed and the run time was much better.

PRCSINSTANCE BEGINDTTM SQL_ID SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS
1964975 08:30:52 22/01/2010 46smbgcfcrb8d 2602481067 20379 20080
1965250 09:08:51 22/01/2010 fpftdx2405zyq 2602481067 20983 20690
1968443 16:42:51 22/01/2010 3rxad5z3ccusv 3398716340 105 80
1968469 16:47:21 22/01/2010 3rxad5z3ccusv 3398716340 90 70
1968485 16:50:19 22/01/2010 3rxad5z3ccusv 3398716340 62 40
1968698 17:40:01 22/01/2010 Oku8f514k3nt0 3398716340 76 50
1968866 18:19:19 22/01/2010 chmyvpsxzyf5n 3398716340 139 120
1968966 18:34:24 22/01/2010 5jblsgmjc7436 3398716340 187 170

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 58

So, not only have | diagnosed a problem with ASH, | have also proven that the fix, when
applied to production has successfully resolved the issue.

03 NOVEMBER 2014

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

What was the Effect of Plan Stability

I have experienced unstable execution plans with processing of Payroll calculations. The
performance of the larger pay group is fine, but some of the execution plans for the smaller
paygroups are different, and performance can be poor.

A set of stored outlines were created for a full payroll identification and calculation process
for the larger payroll, and applied to all subsequent payrolls. Now, | want to prove not only
that the outlines were used, but that they have a beneficial effect.

| have three test scenarios.

1. Alarge streamed payroll calculation was run. It ran without using outlines for 2h
42m, which can considered to be good performance (in fact | used this process to
collect the stored outlines).

2. A small non-streamed payroll calculation without outlines. This ran for over 8 hours
before it was cancelled. Hence, I don’t have data for all statements for this scenario.

3. Asmall non-streamed payroll calculation again, but this time with outlines enabled.
It ran for 2h5m. Not great, considering it has a lot fewer payees than a single stream
of the large payroll, but better than scenario 2.

I can use the ASH data to see whether the execution plan changed, and what effect that had on
performance.

The SQL to perform the comparison looks horrendous, but it is effectively the usual query for
each test scenario in in-line views that are then joined together.

set pages 40
column sqgl_plan_hash_value heading 'sql_plan_hash_value' format 999999999999
column sql_plan_hash_value2 heading 'sql_plan_hash_value' format al2
SELECT /*+ LEADING(@gql rl@ql x1@ql hl@gl) USE_NL(hl@ql)
LEADING(@q2 r2@q2 x2@q2 h2@q2) USE_NL(h2@q2)
LEADING(@g3 r3@q3 x3@g3 h3@q3) USE_NL(h3@q3) */

ql.sql_id
, ql.sql_plan_hash_value, ql.ash_secs
, DECODE(ql.sql_plan_hash_value,q2.sql_plan_hash_value, '**SAME** ',

g2.sql_plan_hash_value) sql_plan_hash_value2
s q2.ash_secs
0 DECODE(ql.sql_plan_hash_value,q3.sql_plan_hash_value, '**SAME** ',
g3.sql_plan_hash_value) sql_plan_hash_value2

, q3.ash_secs
FROM (

SELECT /*+gb_name(ql)*/

hl.sql_id

, hl.sql_plan_hash_value

, (NVL(rl.enddttm,SYSDATE) -rl.begindttm)*86400 exec_secs

, SUM(10) ash_secs

FROM dba_hist_snapshot x1

, dba_hist_active_sess_history hl

9 sysadm.psprcsrgst rl

WHERE x1.end_interval_time >= rl.begindttm

AND x1.begin_interval_time <= NVL(rl.enddttm,SYSDATE)

AND hl.sample_time BETWEEN rl.begindttm AND NVL(rl.enddttm,SYSDATE)
AND hl.Snap_id = x1.Snap_id

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 59

A MONOGRAPH ON ASH - PRACTICAL_ASH.pOCX

AND
AND
AND
AND
AND

AND

) Ql
INNER JOIN (

SELECT

WHERE
AND
AND
AND
AND
AND
AND
AND
AND

AND

) Q2

INNER JOIN (

FROM
’
WHERE
AND
AND
AND

AND

) Q3

/

hl.dbid = x1.dbid

hl.instance_number = x1.instance_number
hl.module Tike rl.prcsname

hl.action LIKE 'PI='||rl.prcsinstance]||'%'
rl.prcsname = 'GPPDPRUN'

rl.prcsinstance = 2524397

GROUP BY rl.prcsname, rl.begindttm, rl.enddttm, hl.sql_id, hl.sql_plan_hash_value

/*+gb_name (g2)*/

h2.sql_id

h2.sgl_plan_hash_value

(NVL(r2.enddttm,SYSDATE) -r2.begindttm) *86400 exec_secs
SUM(10) ash_secs

dba_hist_snapshot x2

dba_hist_active_sess_history h2

sysadm.psprcsrqst r2

x2.end_interval_time >= r2.begindttm
x2.begin_interval_time <= NVL(r2.enddttm,SYSDATE)
h2.sample_time BETWEEN r2.begindttm AND NVL(r2.enddttm,SYSDATE)
h2.Snap_id = x2.Snap_id

h2.dbid = x2.dbid

h2.instance_number = x2.instance_number

h2.module Tike r2.prcsname

h2.action LIKE 'PI='||r2.prcsinstance||'%'

r2.prcsname = 'GPPDPRUN'

r2.prcsinstance = 2524456

GROUP BY r2.prcsname, r2.begindttm, r2.enddttm, h2.sql_id, h2.sql_plan_hash_value

ON gl.sql_id = g2.sql_id

SELECT /*+qgb_name(q3)

h3.sql_id

h3.sgl_plan_hash_value

(NVL(r3.enddttm,SYSDATE) -r3.begindttm)*86400 exec_secs

SuM(1) ash_secs

v$active_sSession_history h323

sysadm.psprcsrqst r3

h3.sample_time BETWEEN r3.begindttm AND NVL(r3.enddttm,SYSDATE)
h3.module Tike r3.prcsname

h3.action LIKE 'PI='||r3.prcsinstance||'%'

r3.prcsname = 'GPPDPRUN'

r3.prcsinstance = 2524456

GROUP BY r3.prcsname, r3.begindttm, r3.enddttm, h3.sql_id, h3.sql_plan_hash_value

ON gl.sql_id = g3.sql_id
order by g3.ash_secs desc, ql.sql_id

SQL_ID SCENARIO 1 ASH_SECS SCENARIO 2 ASH_SECS SCENARIO 3 ASH_SECS

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 60

23 This query was run soon after test scenario 3 was run so it uses v$active_session_history.

03 NoVvEMBER 2014

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

4uzmzh74rdrnz 2514155560 280 3829487612 28750 **SAME** 502324
4n482cm7r9qyn 1595742310 680 869376931 140 **SAME** 88925
2f66y2u54rulv 1145975676 630 *ESAME* * 531
1n2dfvb3jrn2m 1293172177 150 *XSAME** 150
652y9682bqqvp 3325291917 30 *ESAME* * 110
d8gxmgp2zydta 1716202706 10 678016679 10 **SAME** 32
2np47twhd5nga 3496258537 10 *HXSAME** 27
4ru0618dswz?>y26 2621940820 10 539127764 22
4ru0618dswz3y 539127764 100 *ESAME* * 22
4ru0618dswz3y 3325291917 10 539127764 22
4ru0618dswz3y 1403673054 110 539127764 22
gnnu2hfkjm2yd 1559321680 80 *HSAME** 19
fxz4z38pybu3x 1478656524 30 4036143672 18
2xk3jjwvmyf99c 1393004311 20 *ESAME* * 18
a05wrd51zy3kj 2641254321 10 *HESAME* ¥ 15

24 On the small payroll calculation, without outlines, this statement move than 100 times
longer. It had not completed by this stage — the process was cancelled. With outlines enabled
this statement used the same execution plan as in scenario 1. It didn’t perform that well
compared to the large payroll calculation; clearly more work is required for this statement.
However, at least it did complete and it did result in improved performance for the small
payroll.

25 This is an example of a statement that performed better on the small payroll without an
outline. So, sometimes it is better to let the optimiser change the plan!

26 This statement executed with 4 different execution plans during the large payroll, but once
the outline was applied only one was used, and this seems to be

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 61

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Which line in the Execution Plan?

Again from 11g, the line in the execution plan is recorded in the ASH data in

03 NOVEMBER 2014

SQL_PLAN_LINE_ID. I can also group the ASH data by this column and determine not just
which statement consumes the most time, but which operation in the exection plan for that

statement is consuming the time. | usually do this for one SQL statement at a time.

select /*+leading(r x h) use nl(h)*/
r.prcsinstance, H.SQL plan hash value, h.sgl plan line id
, sum(10) ash secs
from DBA HIST SNAPSHOT x
, DBA HIST ACTIVE SESS HISTORY h
, sysadm.psprcsrgst r
WHERE X.END INTERVAL TIME >= r.begindttm

AND X.BEGIN INTERVAL TIME <= NVL(r. enddttm, SYSDATE)

And h.sample time between r.begindttm AND NVL (r.enddttm, SYSDATE)
and h.SNAP id = X.SNAP id

and h.dbid = x.dbid

and h.instance number = x.instance number

and h.module = r.prcsname

and h.action LIKE 'PI='||r.prcsinstance||'S%'

And r.begindttm >= TRUNC (SYSDATE)

and r.prcsname = 'CM CSTACCTG'

and h.sql id = 'a47fb0x1b23jn'

group by H.SQL plan hash value, r.prcsinstance, h.sql plan line id
ORDER BY prcsinstance, ASH SECS DESC

I now have a profile of a single SQL statement by plan line number.

PRCSINSTANCE SQL PLAN HASH VALUE SQL PLAN LINE ID ASH SECS

4945802 483167840 25 2410
483167840 24 1190
483167840 26 210
483167840 20 190
483167840 21 30
483167840 16 20
483167840 23 10
483167840 22 10
483167840 18 10
483167840 10
483167840 7 10

The plan line IDs can be related back to the execution plan.

Plan hash value: 483167840

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |IN-OUT| PQ Distrib |
| 14 | NESTED LOOPS | | | | | | Q1,04 | pcwp |

| 15 | NESTED LOOPS | | 3988 | 669K | 113k (1)| 00:06:08 | Q1,04 | Pcwp |

| 16 | HASH JOIN SEMI | | 3851 | 481K | 112k (1)| 00:06:05 | Q1,04 | pcwp |

| 17 | PX RECEIVE | | 3771K]| 233m| 61175 (1| 00:03:19 | Q1,04 | Pcwp |

| 18 | PX SEND HASH | :TQ10003 | 3771K| 233M| 61175 (1| 00:03:19 | Q1,03 | P->P | HASH
| 19 | PX BLOCK ITERATOR | | 3771k| 233M| 61175 (1)| 00:03:19 | Q1,03 | PcwC |

| 20 | TABLE ACCESS FULL | PS_CM_DEPLETE | 3771K| 233M| 61175 (1] 00:03:19 | Q1,03 | pPcwp |

| 21| BUFFER SORT | | | | | | Q1,04 | pcwcC |

| 22 | PX RECEIVE | | 6058K]| 364Mm| 50906 (1)| 00:02:46 | Q1,04 | Pcwp |

| 23 | PX SEND HASH | :TQL0001 | 6058K]| 364M| 50906 (1)| 00:02:46 | | S->P | HASH
| 24 | INDEX FULL SCAN | PS_CM_DEPLETE_COST | 6058K]| 364M| 50906 (1)| 00:02:46 | | |

| 25 | INDEX UNIQUE SCAN | PS_TRANSACTION_INV | 1| | 1 (0)| 00:00:01 | Q1,04 | PcwP |

| 26 | TABLE ACCESS BY INDEX ROWID| PS_TRANSACTION_TINV | 1] 44 | 1 (0)| 00:00:01 | Q1,04 | Pcwp

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 62

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 63

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

Recursive SQL

Sometimes a SQL statement causes another SQL statement to run behind the scenes. During
SQL parse, Oracle may issue SQL to retrieve information from the catalogue that is usually
refered to as ‘recursive SQL’. Other examples include SQL that is executed within a trigger,
or within a PL/SQL procedure.

From Oracle 11gR2, there is a new column in the ASH data; TOP_LEVEL_SQL _ID. Thisis
the 1D of the SQL statement that spawned the recursive SQL.

Select * From (

select /*+leading(r x h) use_n1Ch)*/
r.prcsinstance

, h.top_level_sql_id

, h.sql_id, h.sql_plan_hash_value

, (r.enddttm-r.begindttm)*86400 exec_secs

, COUNT(DISTINCT sql_exec_id) num_execs

SUM(10) ash_secs

10*COUNT (DISTINCT sample_id) elap_secs

COUNT(DISTINCT r.prcsinstance) PIs

from DBA_HIST_SNAPSHOT X

, DBA_HIST_ACTIVE_SESS_HISTORY h

, sysadm.psprcsrqgst r

WHERE X.END_INTERVAL_TIME >= r.begindttm
AND X.BEGIN_INTERVAL_TIME <= NVL(r.enddttm,SYSDATE)
And h.sample_time between r.begindttm AND NVL(r.enddttm,SYSDATE)
and h.SNAP_id = X.SNAP_id

and h.dbid = x.dbid

and h.instance_number = x.instance_number
and h.module = r.prcsname
and h.action LIKE 'PI='"||r.prcsinstance||'%"

and r.prcsinstance = 4604485

and h.top_level_sql_id = 'bvng3lhbmpzzy'

group by r.prcsinstance, r.prcsname, r.begindttm, r.enddttm
, h.top_level_sql_id

, h.sql_id, h.sql_plan_hash_value

ORDER BY ASH_SECS DESC

) order by ash_secs desc

/
Here we can see that two recursive statements were spawned by bvng31lhbmpzzy, and most of
the time was spent in them.

PRCSINSTANCE TOP_LEVEL_SQL SQL_ID SQL_PLAN_HASH_VALUE EXEC_SECS NUM_EXECS ASH_SECS ELAP_SECS PIS

4604485 bvnqg3lhbmpzzy 35cpmm408n5qj 1757521524 1069 79 790 790 1
4604485 bvng3lhbmpzzy bvng3lhbmpzzy 1757521524 1069 1 70 70 1

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 64 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014

In this example 35cpmm408n5qj is an insert statement that is issued by a PL/SQL block. | can
tell that because the bind variable numbr is prefixed with a ‘B’.

select sql_id, sgl_text
from dbA_hist_sqltext

where sgl_id = '35cpmm408n5qj"’

35cpmm408n5qj INSERT INTO PS_GHG_A_BI_CITM VALUES (:B34 , SYSDATE , :B33 , :Bl1 , :B2 , :B3 ,
:B4 , :B5, :B6 , :B7 , :B8 , :B9 , :B10 , :B11 , :B12 , :B13 , :B14 , :B15 , :B
16 , :B17 , :B18 , :B19 , :B20 , :B21 , :B22 , :B23 , :B24 , :B25 , :B26 , :B27
, :B28 , :B29 , :B30 , :B31 , :B32)

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

In fact, the insert statement comes from a standard PeopleSoft auditing trigger that is executed
for each row processed on the original table. We can only count 79 executions because there
are only 79 rows of data, the Application Engine trace shows that over 100,000 rows were
updated on the table with the trigger.

Top SQL ID can also simply refer to the originating PL/SQL call.

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 65

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Temporary Space Overhead

03 NOVEMBER 2014

From 11gR2, ASH data includes information about memory utilisation in a column called
TEMP_SPACE_ALLOCATED. Let me give you a real life practical example.

A Financials customer runs four concurrent instances of the cost accounting process. Two of
them complete successfully, but two fail regularly with ORA-1652: Unable to extend temp
segment ... but complete successfully when run in isolation. The question is what is

consuming the temporary tablespace and why.

Select * From (

select /*+leading(r x h) use nl(h)*/
r.prcsinstance

; h.sgl_id, h.sgl _plan_hash_value

(r.enddttm-r.begindttm) *86400 exec_secs

count (distinct sql_exec_id) num_execs

sum(10) ash_secs

10*count (distinct sample id) elap_secs

from DBA HIST SNAPSHOT x

, DBA_HIST ACTIVE SESS_HISTORY h

, Ssysadm.psprcsrgst r

WHERE X.END INTERVAL TIME >= r.begindttm

and r.prcsname = 'CM CSTACCTG'
, h.sql id, h.sgl plan hash value
ORDER BY ASH SECS DESC

) order by ash secs desc

/

o round(max(tempispaceiAllocated)/1624/1024,0) tempMb

AND X.BEGIN_ INTERVAL TIME <= NVL (r.enddttm, SYSDATE)

And h.sample time between r.begindttm AND NVL (r.enddttm, SYSDATE)
and h.SNAP id = X.SNAP_id

and h.dbid = x.dbid

and h.instance number = x.instance number

and h.module = r.prcsname

and h.action LIKE 'PI='| |r.prcsinstance]|'S$"'

And r.begindttm >= TRUNC (SYSDATE)

group by r.prcsinstance, r.prcsname, r.begindttm, r.enddttm

having sum(10) > (NVL(r.enddttm,SYSDATE)-r.begindttm)*86400/100*5 --5%

This report shows the maximum temporary segment consumption of each SQL statement in
each process. With a temporary tablespace of 300Gb it is easy to see why 2 processes doing

this is enough to cause trouble.

PRCSINSTANCE SQL_ID SQL_PLAN HASH VALUE EXEC_SECS
4945802 a47fb0x1b235n 483167840
4945803 a47fb0x1b235n 3805993318
4945803 51c7zqydywmhl 3992646197
4945802 51c7zqydywmhl 3992646197
4945802 65x8vEcOuc8zz 1628923514
4945803 65x8vEcOuc8zz 1628923514
4945803 86blvy6mpripg 2955729951
4945802 86blvy6mpripq 2955729951
4945803 6033hbhdan9b8s 3380418010

NUM_EXECS ASH SECS ELAP_SECS TEMPMB
1 3900 3900 134
1 3420 3420 134
1 1330 1330
1 1140 1140
1 690 690
1 680 680
1 490 490
1 470 470
1 480 480

There are two execution plans in play for the same problem statement in different instances of
the process. | could also have profiled this by line number of plan to identify exactly which

operation in the plan was consuming memory.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 66

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Things That Can Go Wrong

DISPLAY_AWR reports old costs

This is not really something that goes wrong, but it is a word of warning.

Here is an output from display_awr. Note the cost.

SELECT AWPATH_ID, AWTHREAD_ID

FROM PS_SAC_AW_STEPINST
WHERE AWPRCS_ID = :1 AND SETID = :2
AND EFFDT = TO_DATE(:3,'YYYY-MM-DD') AND STAGE_NBR = :4 AND AWSTEP_STATUS <> :5 AND
AWTHREAD_ID IN (SELECT AWTHREAD_ID FROM PS_PV_REQ_AW WHERE PARENT_THREAD = 601330)
GROUP BY AWTHREAD_ID, AWPATH_ID

ORDER BY AWTHREAD_ID, AWPATH_ID

Plan hash value: 1898065720

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | | | 1165 (100) | |
| 1 | SORT GROUP BY | | 3 | 216 | 1165 (2)| 00:00:14 |
| 2 | TABLE ACCESS BY INDEX ROWID| PS_PV_REQ_AW | 1| 10 | 3 (0)| 00:00:01

| 3 | NESTED LOOPS | | 3 | 216 | 1164 (2)| 00:00:14 |
| 4 | TABLE ACCESS FULL | PS_SAC_AW_STEPINST | 167 | 10354 | 663 (4)| 00:00:08

| 5 | INDEX RANGE SCAN | PS_PV_REQ_AW | 1| | 2 (0)| 00:00:01

- SEL$5DA710D3
SEL$5DA710D3 / PS_PV_REQ_AW@SEL$2

- SEL$5DA710D3 / PS_SAC_AW_STEPINST@SELS$1

[%,] E N =
1

- SEL$5DA710D3 / PS_PV_REQ_AW@SEL$2

outline Data

BEGIN_OUTLINE_DATA
IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('10.2.0.4")
OPT_PARAM('_b_tree_bitmap_plans' 'false')
OPT_PARAM(' _complex_view_merging' 'false')
OPT_PARAM(' _unnest_subquery' 'false')
OPT_PARAM('optimizer_dynamic_sampling' 4)
ALL_ROWS

OUTLINE_LEAF(@"SEL$5DA710D3")
UNNEST(@"SEL$2")

OUTLINE(@"SEL$1")

OUTLINE(@"SEL$2")

FULL (@"SEL$5DA710D3" "PS_SAC_AW_STEPINST"@"SEL$1")

INDEX(@"SEL$5DA710D3" "PS_PV_REQ_AW"@"SEL$2" ("PS_PV_REQ_AW"."AWTHREAD_ID"

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 67

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

*/

1-:1

2 - 12

3 -:3

4 - :4

5-:5
Note

"PS_PV_REQ_AW"."AWPRCS_ID"))

END_OUTLINE_DATA

Peeked Binds (identified

(VARCHAR2 (30),
(VARCHAR2 (30),
(VARCHAR2 (30),
(VARCHAR2 (30),

(VARCHAR2 (30),

LEADING(@"SEL$5DA710D3" "PS_SAC_AW_STEPINST"@"SEL$1" "PS_PV_REQ_AW"@"SEL$2")

USE_NL(@"SEL$5DA710D3" "PS_PV_REQ_AW"@"SEL$2")

by position):

CSID=31):
CSID=31):
CSID=31):
CSID=31):
CSID=31):

'Requisition’
' SHARE'
'1901-01-01"'
g

=

- dynamic sampling used for this statement

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 68

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

This is a plan | collected with EXPLAIN PLAN FOR and dbms_xplan.display. Same plan,
but different cost. The cost in the plan produced by DISPLAY_AWR is the cost when the
statement was first captured by AWR.

Plan hash value: 1898065720

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 3| 216 | 136Kk (1)| 00:27:16

| 1 | SORT GROUP BY | | 3 | 216 | 136K (1)| 00:27:16 |
|* 2 | TABLE ACCESS BY INDEX ROWID| PS_PV_REQ_AW | 1| 10 | 3 (0)| 00:00:01

| 3 | NESTED LOOPS | | 3 | 216 | 136K (1)| 00:27:16 |
|* 4| TABLE ACCESS FULL | PS_SAC_AW_STEPINST | 45158 | 2734K| 667 (4)| 00:00:09
[* 5| INDEX RANGE SCAN | PS_PV_REQ_AW | 1| | 2 (0)| 00:00:01

2 - filter("PARENT_THREAD"=601330)
4 - filter("STAGE_NBR"=TO_NUMBER(:4) AND "AWSTEP_STATUS"<>:5 AND "AWPRCS_ID"=:1 AND

"SETID"=:2 AND "EFFDT"=TO_DATE(:3,'YYYY-MM-DD'))

n_mn

5 - access("AWTHREAD_ID"="AWTHREAD_ID")

Sometimes, when I use explain plan for I don’t get the same plan. That is a bit of an alarm
bell, but I can force the same plan by using the profile of hints in the plan produced by
DISPLAY_AWR

Statement not in Library Cache

In an active system, especially one that routinely doesn’t use bind variables, statements will
get aged out of the library cache.

SELECT * FROM table(dbms_xplan.display_cursor('gpdwr389mg6lh',0, 'ADVANCED"'));

PLAN_TABLE_OUTPUT

SQL_ID: gpdwr389mg6lh, child number: O cannot be found

Try looking in AWR with the dbms_xplan.display_awr function. You may still not find it
because it had already been aged out at the time of the AWR snapshot. If you do find it
remember that the costs could be old.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 69

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

Only Some Statements are in the Library Cache

You’ve seen examples where literal values mean that each statement is different. So we
aggregate by sgl_plan_hash_value. This is a different variant on the theme. The innermost
query sums time by SQL_ID and SQL_PLAN_HASH_VALUE, but we also outer join to
DBA_HIST_SQLTEXT to see if we have captured the SQL text and plan.

Then | use an analytic function to find the rank statement within each execution plan, but
notice | am ranking by time for statements in the AWR repository.

I still want the plans which have the most time.

Select *
FROM ¢
SELECT ROW_NUMBER()27 over (PARTITION BY x.sql_plan_hash_value ORDER BY x.awr_secs desc) as ranking
, x.sql_id, x.sql_plan_hash_value
, SUM(x.ash_secs) over (PARTITION BY x.sql_plan_hash_value) tot_ash_secs
, SUM(x.awr_secs) over (PARTITION BY x.sql_plan_hash_value) tot_awr_secs
, COUNT(distinct sql_id) over (PARTITION BY x.sql_plan_hash_value) sql_ids
FROM (
SELECT h.sql_id
, h.sgql_plan_hash_value
s SUM(lO)28 ash_secs

, 10*count(t.sq1_id)29

awr_secs
FROM dba_hist_snapshot x
y dba_hist_active_sess_history h
LEFT OUTER JOIN dba_hist_sqltext t
ON t.sql_id = h.sql_id

WHERE x.end_interval_time >= TO_DATE('201003080830', 'yyyymmddhh24mi"')

AND x.begin_interval_time <= TO_DATE('201003081200', 'yyyymmddhh24mi"')
AND h.sample_time >= TO_DATE('201003080830"', 'yyyymmddhh24mi ')
AND h.sample_time <= TO_DATE('201003081200', 'yyyymmddhh24mi"')
AND h.snap_id = x.snap_id
AND h.dbid = x.dbid
AND h.instance_number = x.instance_number
AND h.module = 'WMS_RUN_TADM'
GROUP BY h.sql_id, h.sql_plan_hash_value
) x
)y
where y.ranking = 1

ORDER BY tot_ash_secs desc, ranking
/

27 1 am using ROW_NUMBER not rank because | want an arbitary ranked first statement, not
all the equally first statements.

28 50 here | am counting time for statement in the ASH repository.

29 Here | am counting time for statements all found in the AWR repository.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 70 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

So now, | know that I can get plans for the SQL IDs with non-zero AWR time. There are still
some statements for which | can get neither the SQL nor the execution plan.

sQL Plan
RANKING SQL_ID Hash value TOT_ASH_SECS TOT_AWR_SECS SQL_IDS
1 1wfhpn9k2x3hq 0 7960 4600 13
1 2wsan9jlpk3j2 1061502179 4230 4230 1
1 bnxddumOrrvyh 918066299 2640 1200 179
1 02cymzmyt4mdh 508527075 2070 0 4530
1 5mOxbf7vn8490 2783301143 1700 0 49
1 0jfp0g054cb3n 4135405048 1500 0 47
1 1lbygm2nyghOs 3700906241 1370 0 27
1 6g999cfg26kwb 3058602782 1300 1300 1

I can do the usual trick of generating the commands to get the SQL

SELECT 'SELECT * FROM
table(dbms_xplan.display_awr('"'||sql_id||"'"'"',"||sql_plan_hash_value]||',NULL,"'"ADVANCED''))/*"'||tot_ash_secs||"',"]|]|
tot_awr_secs||"'*/;"'
FROM (
SELECT ROW_NUMBER() over (PARTITION BY x.sql_plan_hash_value ORDER BY x.awr_secs desc) as ranking
, x.sql_id, x.sgl_plan_hash_value
, SUM(x.ash_secs) over (PARTITION BY x.sql_plan_hash_value) tot_ash_secs
, SUM(x.awr_secs) over (PARTITION BY x.sql_plan_hash_value) tot_awr_secs
y COUNT(distinct sql_id) over (PARTITION BY x.sql_plan_hash_value) sql_ids
FROM (
SELECT h.sql_id
s h.sql_plan_hash_value
s SUM(10) ash_secs
, 10*count(t.sql_id) awr_Secs
FROM dba_hist_snapshot x
y dba_hist_active_sess_history h
LEFT OUTER JOIN dba_hist_sqltext t
ON t.sql_id = h.sql_id
WHERE x.end_interval_time >= TO_DATE('201003080830', 'yyyymmddhh24mi"')

AND x.begin_interval_time <= TO_DATE('201003081200', 'yyyymmddhh24mi"')
AND h.sample_time >= TO_DATE('201003080830"', 'yyyymmddhh24mi ")
AND h.sample_time <= TO_DATE('201003081200', 'yyyymmddhh24mi")
AND h.snap_id = x.snap_id
AND h.dbid = x.dbid
AND h.instance_number = x.instance_number
AND h.module = '"WMS_RUN_TADM'
GROUP BY h.sql_id, h.sql_plan_hash_value
) x
)y
where y.ranking = 1

30 So we had 207 samples, representing 2070 seconds of SQL for statement with this
execution plan. There are 45 distinct SQL_IDs, we don’t know how many executions wer are
talking about, it is probably one per SQL_ID, but I don’t know that until 11g.

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 71

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

03 NOVEMBER 2014

ORDER BY tot_ash_secs desc, ranking

/

SELECT * FROM table(dbms_xplan.display_awr('1lwfhpn9k2x3hq',NULL,NULL, "ADVANCED'))/*7960,4600%/;
SELECT * FROM table(dbms_xplan.display_awr('2wsan9j1pk3j2',1061502179,NULL, 'ADVANCED'))/*4230,4230%/
SELECT * FROM table(dbms_xplan.display_awr('bnxddumOrrvyh',918066299,NULL, 'ADVANCED'))/*2640,1200%/;
SELECT * FROM table(dbms_xplan.display_awr('aaurjw06dyt5b"',508527075,NULL, 'ADVANCED'))/*2070,0%/;
SELECT * FROM table(dbms_xplan.display_awr('2s2xyadkmzxmv',2783301143,NULL, 'ADVANCED'))/*1700,0%/;
SELECT * FROM table(dbms_xplan.display_awr('gkky737xp8v8z',4135405048,NULL, 'ADVANCED"'))/*1500,0%/;
SELECT * FROM table(dbms_xplan.display_awr('9sd7bjs6wc7xq’',3700906241,NULL, 'ADVANCED'))/*1370,0%/;

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 72

Lots of Shortlived Non-Shareable SQL

I have done the usual query to sum the time by SQL_ID, and I get one row per SQL ID, so
instead I will GROUP BY plan hash value. So the SQL is different every time, but quite
similar because they share plan hash values.

We are working from AWR history, so one sample every 10 seconds. We get one sample for
each SQL_ID. So clearly I have lots of similar but different statements that don’t take very
long. | imagine a loop with litteral values instead of bind variables!

PRCSINSTANCE NUM_SQL_ID SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS
50007687 169 953836181 3170 1690
50007687 50 807301148 3170 500
50007687 22 4034059499 3170 220
50007687 14 2504475139 3170 140
50007687 2 0 3170 70
50007687 1 1309703960 3170 20
50007687 1 3230852326 3170 10
50007687 1 3257716453 3170 10
50007687 1 3852975016 3170 10
50007687 1 3205663729 3170 10
50007687 1 2791534567 3170 10
50007687 1 2098696903 3170 10
50007687 1 1880529843 3170 10
50007687 1 1173536273 3170 10
50007687 1 1089066969 3170 10
50007687 1 301402716 3170 10

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Actually, I can get the execution plan for any of these statements in the AWR history, so in
this variant of the query I have joined to DBA_HIST_SQLTEXT to see which SQL_IDs | do
have information for (I can switch that to a left outer join to get back to the usual behaviour).

SELECT /*+LEADING(r x h) USE_NL(Ch)*/
r.prcsinstance
, COUNT(distinct h.sql_id) num_sql_id
, h.sgl_plan_hash_value
, (CAST(r.enddttm AS DATE)-CAST(r.begindttm AS DATE))*86400 exec_secs
, SuM(10) ash_secs
FROM dba_hist_snapshot x
, dba_hist_active_sess_history h
INNER /*LEFT OUTER*/ JOIN DBA_HIST_SQLTEXT ¢
ON q.dbid = h.dbid and q.sql_id = h.sql_id
, sysadm.psprcsrqgst r
WHERE x.end_interval_time >= r.begindttm
AND x.begin_interval_time <= r.enddttm

AND h.sample_time BETWEEN r.begindttm AND r.enddttm
AND h.snap_id = x.snap_id

AND h.dbid = x.dbid

AND h.instance_number = X.instance_number

AND h.module = r.prcsname

AND h.action LIKE 'PI='||r.prcsinstance]||'%"'

AND r.prcsinstance = 50007687

GROUP BY r.prcsinstance, r.prcsname, r.begindttm, r.enddttm
, h.sql_plan_hash_value

ORDER BY ash_secs DESC

So the few that | have a plan for, are not very significant.

PRCSINSTANCE NUM_SQL_ID SQL_PLAN_HASH_VALUE EXEC_SECS ASH_SECS

50007687 1 0 3170 10
50007687 1 3205663729 3170 10
50007687 1 2791534567 3170 10

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 73

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

This is the Application Engine batch timings report for the same process. ASH suggests that
the top execution plan had 169 exections, but remember that is a sample every 10 seconds.

The truth is much worse. The batch timings say there is a step that is executed 64224 times.

It took 2566 seconds, so that is only 40ms per execution. So | am only sampling 1 in 250
executions, so no wonder I don’t have many of them in the AWR repository. They are getting
aged out too quickly.

It was also compiled 64224 times, and that tells me that this step does not have reuse
statement, possible because there is dynamic SQL in play.

Batch Timings - Summary
Instance: 50007687 Type: Application Engine
Name: AR_CHNDMON Description: Receivables Condition Monitor
Elapsed: 64410 Application Engine: 1159
In PeopleCode: 90500 SOL & PeopleCode: 128
| msoL 2940090

stomize | Find | W 0] £ First |E| 1-80 of 477 o Last

Compile Compile Execute Execute Fetch Fetch PC PC
Count Time Count Time Count Time Count Time

Program Detail line identifer

AR_CNDMON CHK_USER.IMSPRCEZ.S G4224 30960 64224 2566340 i] i 0
AR_CNDMON CHK_USER.LDSQLS 64224 6230 64224 230220 64224 0 0 0
AR_CNDMON CANCLACT.CANSLETI.S 1 0 1 18010 i] i 0
AR_CNDMON ASRULES.LOADRLILS.S 3 0 3 15820 0 1] 0 0
AR_CNDMON ASRULES.DELWKC.S 3 0 3 2710 i] i 0
AR CNDMOMN DEZACTMPIMNSTMP.S 1 0 1 2680 0 1] 0 0

I could criticise the kind of programming that leads to this, but it also shows a scenario where
ASH will be of limited benefit.

This is a situation where | might want to use SQL trace to see what is going on in these

statements. On the other hand, 40ms isn’t bad for a SQL statement, how much faster can I
make it.

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 74 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Error ORA-06502

I have no idea why display_awr produces ORA-6502, but sometimes it does. It seems to be
something to do with very large SQL statements. But you still get the execution plan.

SELECT * FROM table(dbms_xplan.display_awr('9vnanSkgshlaq', 2262951047 ,NULL, 'ADVANCED'));

SQL_ID 9vnan5kgshlaq

An uncaught error happened in prepare_sql_statement : ORA-06502: PL/SQL: numeric or value error

Plan hash value: 2262951047

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | | | 1 (100)| |
| 1 | HASH GROUP BY | | 1| 164 | 1 (100)| 00:00:01

The text is there, so you can go can get it FROM the AWR cache yourself.

SELECT sql_text FROM dba_hist_sqltext where sql_id = '9vnan5kgshlaq'

Error ORA-01422

Sometimes, doms_xplan fails because there are two SQL statements with the same SQL_ID.

An uncaught error happened in prepare_sql_statement : ORA-01422: exact fetch returns more than requested number of rows ‘

This usually happens because the database has been cloned (from Production) and renamed,
and then the same SQL statement has been captured by an AWR snapshot. The answer is to
delete at least the duplicate rows from sys.wrh$sqltext.

delete

from sys.wrh$_sqgltext tl
where tl.dbid != (select d.dbid from v$database d)
and exists(select 'x'

from sys.wrh$_sqgltext t2

where t2.dbid = (select d.dbid from v$database d)
and t2.sql_id = tl.sql_id)

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 75

A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX 03 NOVEMBER 2014

Error ORA-44002
I have seen this with Global Temporary Tables and with direct path mode (the APPEND hint).

PLAN_TABLE_OUTPUT

ERROR: cannot get definition for table 'BZTNCMUX31XP5'
ORA-44002: invalid object name

PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 76 ©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL

03 NOVEMBER 2014 A MONOGRAPH ON ASH - PRACTICAL_ASH.DOCX

Appendix

Further reading

e Sifting through the ASHes, Graham Wood, Oracle
(http://www.oracle.com/technology/products/manageability/database/pdf/twp03/PPT

active session_history.pdf)

e The ASHes of (DB) Time, Graham Wood at UKOUG2009
(http://www.ukoug.org/lib/show document.jsp?id=11472).

- And you can watch the video of Graham giving this presentation at
MOW?2009 on the Oracle Table Website

- http://www.oaktable.net/media/mow2010-graham-wood-ashes-time-partl

- http://www.oaktable.net/media/mow2010-graham-wood-ashes-time-part-2

o Doug Burns has written some excellent material many subjects including ASH on his
Oracle Blog (http://oracledoug.com/serendipity/index.php?/plugin/tag/ASH).

¢ Introduction to DBMS_XPLAN (http://www.go-
faster.co.uk/Intro DBMS XPLAN.ppt), UKOUG2008

- With acknowledgements to 10g/11g DBMS_XPLAN, Carol Dacko,
Collaborate 08

©GO0-FASTER CONSULTANCY LTD. - CONFIDENTIAL PRACTICAL USE OF ORACLE ACTIVE SESSION HISTORY 77

http://www.oracle.com/technology/products/manageability/database/pdf/twp03/PPT_active_session_history.pdf
http://www.oracle.com/technology/products/manageability/database/pdf/twp03/PPT_active_session_history.pdf
http://www.oracle.com/technology/products/manageability/database/pdf/twp03/PPT_active_session_history.pdf
http://www.ukoug.org/lib/show_document.jsp?id=11472
http://www.oaktable.net/media/mow2010-graham-wood-ashes-time-part1
http://www.oaktable.net/media/mow2010-graham-wood-ashes-time-part-2
http://oracledoug.com/serendipity/index.php?/plugin/tag/ASH
http://www.go-faster.co.uk/Intro_DBMS_XPLAN.ppt
http://www.go-faster.co.uk/Intro_DBMS_XPLAN.ppt

	A Monograph on ASH
	Practical Use of Oracle Active Session History
	Contents
	Introduction
	Agenda

	A Very Brief Overiew of Active Session History
	ASH in Oracle Enterprise Manager
	What data does ASH retain?
	Comparison with SQL Trace

	Application Instrumentation
	PeopleSoft Specific Instrumentation

	Using SQL to Analyse ASH Data
	Statistical Analysis Approach
	Objectives
	PeopleSoft Specific ASH Queries
	Batch Processes
	Application Engine from PeopleTools 8.52
	On-Line Activity
	XML Report

	Other Techniques
	Monitoring Progress of Processes in Real Time
	Developers not Using Bind Variables

	How Many Executions?
	Oracle 10g
	Oracle 11g

	How Many Transactions?
	When Did the Transaction Start

	Single Wait Event
	What Kind of Single Block Read

	Blocking Lock Analysis
	Resolving the Lock Chain to the Ultimate Blocking Session

	Which Tables Account for My I/O?
	Who is using this index?
	Index Use from SQL Plans Captured by AWR
	Getting Rid of Indexes

	Limitations of Method

	Did my Execution Plan Change?
	What was the Effect of Plan Stability

	Which line in the Execution Plan?
	Recursive SQL
	Temporary Space Overhead
	Things That Can Go Wrong
	DISPLAY_AWR reports old costs
	Statement not in Library Cache
	Only Some Statements are in the Library Cache
	Lots of Shortlived Non-Shareable SQL
	Error ORA-06502
	Error ORA-01422
	Error ORA-44002

	Appendix
	Further reading

